g

'y OSCL MeINaL, YO T CopRinT VSV

dUNSHOE TN ] Y

i 122 “.,' )

AR £ 3 iy

@?»“ TR G IR ERTS AR R e R

¢
i
¢

R T

BT,




ADVANCES AND TRENDS
IN STRUCTURAL AND
SOLID MECHANICS

Papers presented at the Symposium on Advances and Trends in
Structural and Solid Mechanics

Held 4-7 October 1982, Washington, D.C.

Editors
AHMED K. NOOR

Professor of Engineering and Applied Science, The George Washington University Center at NASA
Langley Research Center, Hampton, Virginia, U.S.A.

JERROLD M. HOUSNER

Aerospace Engineer, Structures and Dynamics Division, NASA Langley Research Center, Hampton, Virginia,
U.S.A.

Sponsored by the George Washington University and NASA Langley
Research Center in cooperation with the National Science Foundation,
the Air Force Office of Scientific Research, Office of Naval Research, the
American Society of Civil Engineers, and the American Society of
Mechanical Engineers.

PERGAMON PRESS

OXFORD - NEW YORK - TORONTO
SYDNEY - PARIS - FRANKFURT



,-
g
O

U.K. Pergamon Press Ltd., Headington Hill Hall,
Oxford OX3 0BW, England

U.S.A; Pergamon Press Inc., Maxwell House, Fairview Park,
Elmsford, New York 10523, U.S.A.

CANADA Pergamon Press Canada Ltd., Suite 104, 150 Consumers Road,
Willowdale, Ontario M2J 1P9, Canada

AUSTRALIA Pergamon Press (Aust.) Pty. Ltd., P.O. Box 544,
Potts Point, N.S.W. 2011, Australia

FRANCE Pergamon Press SARL, 24 rue des Ecoles,
75240 Paris, Cedex 05, France

FEDERAL REPUBLIC  Pergamon Press GmBH, Hammerweg 6, Postfach 1305,
OF GERMANY 6242 Kronberg-Taunus, Federal Republic of Germany

Copyright © 1983 Pergamon Press Ltd.

All Rights Reserved. No part of this publication may
be reproduced, stored in a retrieval system or trans-
mitted in any form or by any means: electronic,
electrostatic, magnetic tape, mechanical, photocopy-
ing, recording or otherwise, without permission in
writing from the publishers.

ISBN 0 08 029990 3

Published as a special issue of the journal Computers &
Structures, Vol. 16, Numbers 1-4 and supplied to
subscribers as part of their normal subscription. Also
available to non-subscribers.



Computers & Structures Vol. 16, No. 1-4, pp. vii-viii, 1983 0045-7949/83/010vii-02$03.00/0
Printed in Great Britain. Pergamon Press Ltd.

PREFACET

The field of structural and solid mechanics has witnessed significant and far-reaching advances, on a
broad front, in the last decade. The new advances are manifested by the development of new material
laws, new structural theories, sophisticated mathematical models, efficient discretization techniques, and
numerical algorithms as well as versatile and powerful software systems for structural analysis and
design. The driving force behind these activities has been, and continues to be, the need for realistic
modeling, accurate analysis and efficient design of large complex structures subject to harsh environ-
ments. However, the rapid pace of the development is largely due to the opportunities provided by the
extensive advances in computer hardware and software technology as well as the growing interaction
among a number of disciplines including applied mechanics, numerical analysis, software design and
structural engineering.

As a means of communicating recent advances and as a step towards stronger interaction among
applied mechanicians, numerical analysts and structural engineers, a four-day symposium entitled,
“Recent Advances and Trends in Structural and Solid Mechanics,” was held in Washington, D.C. on 4-7
October 1982. The organizing committee expected that by bringing together leading experts and active
researchers in areas which could impact future developments in structural and solid mechanics, formal
presentations and personal interaction would increase communication among the disciplines and foster
effective development of the technology.

The format of the present symposium differs in a number of ways from the preceding two symposia
organized by the George Washington University and NASA Langley Research Center in 1978 and 1980.
First, the length of the symposium is extended to four days and more time is provided for informal
discussions. Second, three general sessions are organized in three key areas of the structural and solid
mechanics discipline, namely: mechanics of materials, finite element technology, and classical analytical
techniques and their computer implementation. The third area is also the subject of another session and
is given special attention in the present symposium. The editors feel that classical analytical techniques
can be combined with contemporary numerical and finite element methods to form effective solution
procedures for many structural and solid mechanics problems.

Most of the papers presented at the symposium which report completed research work are contained
in this proceedings volume. A companion NASA Conference Publication entitled, “Research in
Structural and Solid Mechanics,” (1982), contains twenty-six papers presented at the symposium. These
papers are primarily short papers reporting research in progress.

The fifty-nine papers contained in this volume document clearly the strides made in various aspects
of the structural and solid mechanics discipline and help identify future directions of developments in
this field. The topic headings in the symposium are largely represented by the section headings of this
volume, namely: (1) Mechanics of Materials and Material Characterization; (2) Advances and Trends in
Finite Element Technology; (3) Classical Analytical Techniques and Their Computer Implementation; (4)
Interactive Computing and Computational Strategies for Nonlinear Problems; (5) Advances and Trends
in Numerical Analysis; (6) Design-Oriented Analysis, Artificial Intelligence and Optimization; (7)
Database Management Systems and CAD/CAM; (8) Space Structures and Vehicle Crashworthiness; (9)
Beams, Plates and Fibrous Composite Structures; (10) Contact Problems, Random Waves and Lifetime
Prediction; and (11) Earthquake Resistant Structures and Other Advanced Structural Applications. The
papers contained in this volume will also appear in a special issue of the Journal of Computers and
Structures.

The fields covered by the symposium are rapidly changing, and if new results and anticipated future
directions are to have maximum impact and use, it is imperative that they reach workers in the field as
soon as possible. This consideration led to the decision to publish these proceedings prior to the
symposium. Special thanks go to Pergamon Press for their cooperation in publishing this volume and to

The Publisher apologises to Authors that some articles have been published without authors’ corrections being received in order to
produce the Proceedings in time for the Conference.
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Dean Harold Liebowitz, School of Engineering and Applied Science of the George Washington
University for making arrangements for the publication.

The editors are indebted to the many individuals who contributed to the planning of the symposium,
in particular to the members of the technical program committee and to the symposium secretary, Mrs.
Mary Torian. Special thanks go to the authors of the papers and the referees of the abstracts. The
assistance of the National Science Foundation, the Air Force Office of Scientific Research, the Office of
Naval Research, the American Society of Mechanical Engineers and the American Society of Civil
Engineers are especially appreciated.

The George Washington University Center AHMED K. Noor
at NASA Langley Research Center JErRrOLD M. HOUSNER
Hampton, Virginia, U.S.A.
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MICROMECHANICS

BERNARD BUDIANSKY
Division of Applied Sciences, Harvard University, Cambridge, MA 02138, U.S.A.

Abstract—A brief survey is given of recent and current theoretical studies in the area of micromechanics. Topics
discussed include void collapse, transformation toughening, fiber kinking and thermoelastic dissipation. The
examples discussed illustrate the use of continuum-mechanical concepts to deduce information concerning
constitutive and strength characteristics of metals, ceramics, composites, and rocks.

[NTRODUCTION

The area of micromechanics—the mechanics of very
small things—has been receiving increasing attention
from the mechanics community in recent years. Without
attempting to explore the sociology of this trend, this
paper will present a brief survey of a variety of problems
of micromechanics that are currently of interest.

Micromechanical analyses often have as their goal the
deduction via continuum mechanics of rules of macros-
copic constitutive behavior. There is poetic justice in
this, since constitutive relations, in turn, are indispen-
sible ingredients of continuum mechanics. But other
kinds of micromechanical investigations have as their
focus the involvement of microscopic inhomogeneities in
various kinds of material failure processes. In the studies
to be surveyed here, several kinds of microscopic fea-
tures will be contemplated (voids, inclusions, fibers,
crystals); each of the studies will be primarily relevent to
a different kind of material (metals, ceramics, com-
posites, rocks); and a variety of phenomena will be
considered  (void  collapse, phase-transformation
toughening, fiber-kinking, thermoelastic dissipation).
Analyses will be outlined, with details omitted, and im-
plications of results discussed briefly.

VOID COLLAPSE

It has been accepted for some time that ductile failure
of metals, both at room temperature under increasing
load and at elevated temperature via creep, often in-
volves the growth and coalescence of microscopic voids.
On the other hand, the collapse of voids is an essential
feature of the compaction of collections of fine metallic
particles in powder-metallurgy processing. Some basic
studies of void growth and collapse in viscous solids
were recently given in Refs. [1-3]; the collapse cal-
culations will be outlined here.

Consider a non-linear, incompressible viscous material
obeying, in simple tension, the constitutive relation be-
tween stress o and strain-rate €

lad ®

Here €, and o, are reference strain-rate and stress
parameters. The assumed polyaxial generalization of (1)

is
L3 )
& 2\oy 09 (2)

where s; = 0y — 30,8, is the stress deviator, and o, =
(3s;5i/2)'" is the effective stress. The following fun-

damental void-collapse problem was considered in [3]:
under the remote, axisymmetric, constant stresses o, =
S, 0o=0313=T (§=<0, T=<0), what is the history of
deformation undergone by a single, isolated, initially
spherical void?

The case of linear creep (n =1) was easily solved in
[1] on the basis of the famous Eshelby solution[4] for an
isolated, elastic ellipsoidal inclusion in an infinite elastic
body. Adapting this solution to the case of linear creep,
and making the inclusion vacuous, reveals that the hole
undergoes a continuous metamorphosis, via spheroidal
shapes, towards either a flat crack (for |T|<|S|) or a
thin needle (for |S|<|T|). Simple differential equa-
tions for the evolution of the void-volume V as a func-
tion of time emerge from the Eshelby solution, and for
fixed values of S/T, these are easily integrated numeric-
ally. Time can then be eliminated to provide relationships
between the void volume and the overall strain of the
material. Some typical results for the two distinct modes
of void reduction—pressing (S/T>1) and squeezing
(S/T < 1)—are shown in Figs. 1 and 2, wherein void
volume is plotted, non-dimensionally, against the overall
axial length ratio. Note that zero void-volume is attained
at a finite value of shortening when the void is flattened
into a crack. However, V vanishes only asymptotically
in the squeezing mode.

But now, what about n > 1? First of all, there is a real
surprise, discovered in [1], about the ranges of S/T
corresponding to pressing and squeezing. By means of a
Rayleigh-Ritz solution for the initial mode of defor-
mation of a spherical void, it was found that for n > 1.5,

1

8
VIV,

8l

4

2

T/S=2/5 T/S=1/2 1/8=0
| [ I
o 1.2 14 16 1.8 2
[

Fig. 1. Void collapse: sphere to crack (n=1). V, and V are the
original and current void volumes. L, and L are the original and
current specimen lengths in the direction of S.
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V/Vy

.0

.001

L7lg
Fig. 2. Void collapse: sphere to needle (n =1).

the void would start to flatten, and head towards crack-
like collapse, for a range of values of S/T <1 (see Fig.
3). On the other hand, for some values of S/T > 1, the
void actually gets skinnier, and starts to turn into a
needle. But regardless of the final configuration towards
which the void tends, calculating its history is not easy,
and so some estimation procedures were devised in [3].
In effect, approximate differential equations for the void
volume were written on the basis of interpolations be-
tween the volumetric rates-of-change for spherical holes
found in [1], and those for either asymptotic needles or
cracks. ]

For needle-like cavities, the dilatation rate V/V is
related to S/T by the neat formula

1 VI(V(3) €V)
S/T=1+{V§f [1+x2]“’""3"} €)
0

also discovered in [1]. Here é=
él(S—T)lao|” '((S—T)loy) is the remote axial strain-
rate. The analogous information for crack-like cavities
was estimated on the basis of the numerical results of He

and Hutchinson on fully plastic, mode I penny-shaped
cracks[5]. The approximate interpolative procedures
desired were checked out for the case n = 1 and found to
be reasonably accurate. Some typical results for n > 1
are shown in Fig. 4 for pure pressing (T =0); in Fig. §
for pure squeezing (S =0); and in Fig. 6, with n =35, for
several values of S/T. In this last case, the limiting
configurations go from crack to needle to crack to needle
as T]S varies from zero to infinity. Despite this, the
individual curves follow in orderly progression.

It is evident that results such as these provide only the
beginnings of a quantitative understanding of real void-
compaction processes, ignoring as they do many possibly
important effects of void interaction, non-ideal void
geometry, mass-diffusion effects, and so on. The analo-
gous problems for time-independent, strain-hardening
plasticity are largely unexplored, although it may be
hoped that some of the purely geometrical relations
discussed for voids in viscous metals may carry over,
approximately, to time-independent plasticity.

TRANSFORMATION TOUGHENING

Transformation toughening is a phenomenon that has
excited the attention of many ceramists in the last few
years[6,7]. Ceramics have admirable high-temperature
properties (in fact, this almost defines a ceramic) but
they tend to have low fracture toughness. Transfor-
mation toughening depends on the reinforcement of one
ceramic with tiny particles of another (e.g. zirconia,
Zr0O,) that are susceptible to a dilatant phase trans-
formation when they are subjected to a critical triggering
stress. The idea is this: in the vicinity of a crack tip,
elevated stresses will cause the particles to transform,
expand in volume—and hence tend to close the crack!
But, as we shall see, the situation is not quite that
simple[8, 9].

Suppose that the particles obey the tri-linear relation
shown in Fig. 7(a) between mean stress o =j;o; and
dilatation 6 = €;. Under increasing o, the phase trans-
formation would occur suddenly at the critical mean
stress o, and a jump 6," in dilatation would occur. (In
general, the phase transformation would also involve
shearing deformation, ignored here.) However, under
suitably prescribed histories of mean stress and dilata-
tion, the three branches of the o — @ relation may be
traversed continuously. The slope of branches 1 and 3 is
B, the bulk modulus; the slope of the intermediate
branch is B'. The particles are assumed isotropic, with
shear modulus G.

If a collection of these particles is distributed ran-

0
Crack
T/S
¢
~” Needle
| B
b Crack
S/ T —
Needle
o 1 | ] ] 1 | 1 /4
3 5 7 9 n 13 15

n
Fig. 3. Predicted collapse configurations of initially spherical voids.
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domly, with volume concentration c, in a non-transform-
ing matrix having the same bulk and shear moduli, the
effective macroscopic o — 6 relation of the composite
will be as shown in Fig. 7(b). The slopes of the initial and
final branches remain equal to B, but the intermediate
branch has a slope B related to B' by

(B+4G[3) ' =c(B'+4G[3) ' +(1-c)(B+4G3) ".

4)
1
-
A
V/Vo [ | 1S
- ]
/n=l
ol
L n=3
- L
: n=5
L n=10 |[1
001 L .
01 15 2
A/Ag =Lg/L

Fig. 4. Void collapse: sphere to crack (S<0, T=0). 4, and A
are the original and current cross-sectional areas of the specimen
normal to the direction of S.

T T T

V/V,

=)

o[ T T T TTTIIg

>

"

[e]

L

3
"
w

1
5 10 15
L/Lo = Ap/A

001

Fig. 5. Void collapse: sphere to needle (S =0, T <0).

This is an exact result, independent of particle shape.
Also, the shear modulus of the composite is exactly G,
and the critical stress of the composite stays equal to .
The maximum overall dilatation 7 due to the phase
transformation is given by

0" =cop" )

and this is also exact. The form of eqn (4) suggests that
something special might happen for B = B’ = —4(/3; this
will be verified shortly.

We can now study plane-strain crack-tip stress in-
tensity factors consistent with the o — 6 constitutive
relation of Fig. 7(b) to see whether, and how much, they
have been reduced by the kind of phase transformation
this relation embodies. By analogy with the well-known
small-scale yielding problem of fracture mechanics, one
can introduce the idea of small-scale transformation
(see Fig. 8a), wherein the transformed zone around a
crack tip is very small relative to crack length and all
other geometric variables. Far enough away from the
crack tip, the stresses are proportional to the nominal,
elastic stress-intensity factor K, with the usual 1/Vr
variation. Near the tip, at a stationary crack, one can

T T T

T

ISI
InEx

i

T T T T

V/V
T/S=0 T/S=2/5 S/T=1/2
(crack) (crack) (needle)
ol
r T/S=2/3 S/T=0
r (needle) (needle)
L o= s
L 2
S/T=3/4
F (crack)
.001 ! |
(0] > 1 5 [o]
L/Lo Lo/L

Fig. 6. Collapse of spherical voids, n = 5.

(b)

Fig. 7. Volumetric constitutive relations, (a) particles, (b) com-
posite.
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expect the particles to be transformed within regions like
those shown shaded in Fig. 8(a). The circled numbers
denote corresponding segments in the o — 6 curve of
Fig. 7(b). Thus, in region 3 the particles are fully trans-
formed, in region 2 only partially, and in region 1 not at
all.

Now let K,;, denote the actual stress-intensity factor
at the crack-tip, which is embedded in region 3. The
startling conclusion can be drawn[8, 9] that K,;, = K! In
other words, there is no net alleviating effect of all the
particle expansions on the stress intensity, and hence no
transformation toughening of a stationary crack. As it
turns out, the toughening resides in the crack stopping
capacity of the transformed particles, rather than in the
prevention of crack initiation. Thus (Fig. 8b) the study of
a steadily growing crack in [9] indicates wake regions
of transformed particles that do tend to close the crack
tip, and produce K, < K. (This rests on the assumption
that once the particles transform, they do not untrans-
form back to their original states.)

Various methods have been used in [9] to calculate
K., for the growing crack. The easiest applies to the
case in which there is no region 2 at all, the particles
being either fully transformed or not at all. In turn, the
condition for this to happen is B=-4G/3 (or, for a
backward-slanting branch 2, B > B). For this supercriti-
cal case, a rigorous analytical asymptotic result for
K.,/ K found in [9] is

Kol K ~ 1 —38ﬂa 6)
for sufficiently small values of
_21+w) [ E ] .
o | e [cop"]. (7

(The same answer was found numerically in [8].) Also,
the wake height H is given asymptotically by

:\/(3)(1+u)°[£]2

127 o

H ®

so that, in terms of H, the toughening may be estimated
by the formula

il o

for the reduction in the tip stress-intensity factor.

AK=K-Kg,=

For B/G>-4/3, and « not small, finite-element
methods were used to calculate K,,/K, with explicit
consideration of the zone of partial transformation. The
results are shown in Figs. 9 and 10. The analytical
estimate (9) for AK is very good for B <—4G/3, which
gives the largest possible toughening effect.

Comparisons in Ref. [9] with several bits of available
experimental data suggest that eqn (9) may give only
about 1/3-2/3 of the observed toughening effects. Thus,
there is plenty of room for better understanding of this
interesting, and possibly very useful, phenomenon. In
particular, shear strains in the phase transformation may
have to be considered, and knowledge of the constitutive
rules governing the individual transforming particles
would be useful.

FIBER KINKING

Internal buckling of unidirectionally reinforced fibrous
composite materials under static or dynamic axial com-
pression has long been recognized as a possible mode of
failure. The occurrence of highly localized kinking of
microscopic fiber bundles has recently rekindled interest
in this type of material instability[10]. Figure 11 shows
photographs, under various magnifications, of kink bands
(A. G. Evans, 1977) in carbon-carbon composites.

The theoretical literature on kinking is not profuse.
Kinking was analyzed as elastic shear buckling by
Rosen[11] in 1965, who, in effect, found that kinking
rotation ¢ (see Fig. 12) in initially straight fibers (¢ = 0)
can start at the critical compressive stress

g.=G (10)
where G is an elastic shear modulus of the composite,
defined with respect to shearing strain rate relative to the
rotating fiber axes. This formula is exact for a kink-band
angle of B =0, and under the reasonable assumption of
inextensional fibers, it has been generalized[12] to

0. =G+ Er tan’p (11)
for B#0, where Er is defined in Fig. 12. But eqn (11)
gives B =0 as the critical angle for kinking—this despite
the fact that observed kink angles, while scattered, are
usually bounded well away from zero.

Unfortunately, elastic kinking analyses are not rele-
vant to most composites of current interest. The Rosen
result is very unconservative when applied to, say,
graphite-epoxy or carbon-carbon composites. Further-
more, attempts to salvage elastic kinking on the basis of

(a)

(b)

Fig. 8. Transformed-particle regions (2, 3) in (a) stationary crack, (b) steadily growing crack, embedded in the
nominal elastic stress field o;; ~ K/,-,-(gb)/\/r far from the crack tip.



Micromechanics 7

imperfections fail: zero-angle kinking is imperfection
insensitive[13] and while there is imperfection-sensitivity
for B#0, it is far too small to provide significant knock-
down factors[12].

The situation changes dramatically when we consider
plasticity. If we assume perfect plasticity in pure shear
beyond y = y, = 7,/G, then the maximum stress that can
be supported by a zero-angle kink (8 = 0) is

USI[-% Jm
bty

(12)

where ¢ is an initial imperfection, in the form of a fiber
misalignment angle within the assumed kink region.
Thus, for example, y, = 0.002 and ¢ = 2° hits the elastic
estimate (10) with a plastic knockdown factor of 1/18.
For v, < ¢, (12) gives the approximation
o, ~1ld (13)

which was suggested by Argon[14} in 1972.
Strain hardening in shear hardly changes these results.
But what about 8# 0? Inclined kink-bands induce trans-

o|ml
1A
|
wld

1 | | |

2(1+ ) EQT

9(1-v) mo®

Fig. 9. Ratio of actual to nominal stress-intensity factor. (The curves for B/G > —4/3 were calculated with » = 0.3.)

E6T /H
(1-v) K

Fig. 10. Ratio of actual to nominal stress-intensity factor. The dashed line is the asymptotic result for small §”"
when B/G < —4/3.
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verse stresses at the initiation of kinking, so that a
combined-stress plasticity law must be invoked. The
arbitrary assumption of a quadratic yield condition (as
good as anything in the face of experimental ignorance)

G+ )=

has been used to study inclined kinking, together with
the mathematical assumption-of-convenience E./G =

(oryl7,)*. The result for the maximum compressive stress
is

Yy 0. (15)

So, for a given ¢, misalignments within an inclined band
produce a larger reduction of the elastic kinking stress
than they do for g =0. But the knockdown factor now

-6y

Or=Eréqr

/O'L

97

€. =0

Fig. 12. Kink band notation: dots over stresses represent total time derivatives (not Jaumann derivatives); v, ér, €,
are velocity-strains.
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acts on the bigger o given by (11), and the net effect is
that for comparable values of misalignment, zero-angle
kinking is still predicted.

At this point, we can reasonably conclude that the
most important parameters affecting the kink strength of
real composites have probably been identified. High
stiffness and strength in shear are clearly desirable, and
the sensitivity to fiber misalignment is very great. (Hence
large scatter in kinking strengths may be expected.) But a
nagging question remains: why are large kink angles, up
to 40° or so, persistently observed, and small kink angles
rarely? Can we be sure that we really understood the
kinking mechanism if we ignore this question? The ans-
wer that suggests itself is that, for some reason, the
patterns of initial misalignment that induce plastic Kink-
ing tend to arrange themselves into inclined bands; but
why? A simple analysis of the elastic effects of localized
boundary imperfections provides an answer.

Elastic, plane-strain, inextensional deformation of the
compressed composite gives displacements v(x, y) nor-
mal to the fibers governed by the p.d.e.

(1-0)20 By (2) '
G) x> G ay’ \G) ax?

where vo(x, y) is an initial displacement pattern. If we
contemplate the half-plane y =0, the effect of a highly
localized, very short-wave imperfection at the boundary
may be simulated by

(16)

vo = 8(x)d(y) a7
where the &’s are Dirac delta functions. On the other
hand, a very long-wave imperfection, still concentrated at
the edge y =0, may be represented by

vo = — x| 8(y). (18)
The long-wave imperfection leads to a solution for ¢ =
dv/ dx proportional to

X

_2 zG"U)
x+y(ET

(19

and this corresponds to a locus of |¢|n,.x along the lines

==V(%?)

Similarly, the short-wave imperfection gives |¢|m.. along

x=xy(VQ)-1) \/(GE—_T")

The implications are evident: localized deviations from
ideal fiber alignment (e.g. due to inclusions, voids, fiber
spacing irregularities) having no particular geometrical
bias induce patterns of angular misalignment due to
elastic distortion that arrange themselves into inclined
domains. These rotations then induce plastic kinking into
similarly inclined kink bands.

Failure follows rapidly after plastic deformation
begins, so that it is reasonable to identify o in eqns (20)
and (21) with the kinking failure stress o,. The con-
sequent correlations between o, and the kink angle B

(20)

@1

CAS 16:1/4 - B

that follow are

tan B =+ \/ (1 ;‘5“/0) (long-wave imperfections)
(22a)

=+(VQ2)-1) \/ (1 ;Z‘(/;G> (short-wave imperfections).
(22b)

Hence, for the values E;/G =2 and 4, the kink angles to
be expected should fall in the shaded regions shown in
Fig. 13. So, kink angles less than 10° and greater than 35°
should be infrequent. It may be noted, too, that the
frequent occurrence of twinned kink bands in the upper
photographs of Fig. 11 is consistent with the = 8 loci of
|¢|max emanating from local imperfections.

There is still something else that begs to be addressed:
the kink width W (Fig. 12). To find a rational estimate,
we must change our micromechanical focus, and take
individual fiber dimensions into account. Indeed, it seems
evident that the fiber diameter d is the only meaningful
characteristic size in the problem. The final observed
kink width is clearly delineated by bending breaks in the
fibers, so that local fiber bending resistance, hitherto
ignored, must be considered explicitly. The fibers may,
accordingly, be considered to undergo inextensional
bending until they break. At the same time, the elastic
strain of the matrix can be neglected with respect to its
plastic strain, i.e. the matrix is assumed rigid-plastic.
Smearing out the fibers then leads to a simple couple-
stress formulation which gives no fiber rotations at all
outside an inclined band, and the possibility of rotations

40 long imperfections Et

30

(degrees)
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10 short imperfections
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Fig. 13. Estimated kink-band inclinations.



