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Preface

As indicated in Vol. 1, the purpose of this two-volume textbook is to pro-
vide students of engineering, science and applied mathematics with the spe-
cific techniques, and the framework to develop skill in using them, that
have proven effective in the various branches of computational fluid dy-
namics

Volume 1 describes both fundamental and general techniques that are
relevant to all branches of fluid flow. This volume contains specific tech-
niques applicable to the different categories of engineering flow behaviour,
many of which are also appropriate to convective heat transfer.

The contents of Vol. 2 are suitable for specialised graduate courses in the
engineering computational fluid dynamics (CFD) area and are also aimed
at the established research worker or practitioner who has already gained
. some fundamental CFD background. It is assumed that the reader is famil-
iar with the contents of Vol. 1.

The contents of Vol. 2 are arranged in the following way: Chapter 11 de-
velops and discusses the equations governing fluid flow and introduces the
simpler flow categories for which specific computational techniques are
considered in Chaps. 14-18.

Most practical problems involve computational domain boundaries that
do not conveniently coincide with coordinate lines. Consequently, in
Chap. 12 the governing equations are expressed in generalised curvilinear
coordinates for use in arbitrary computational domains. The corresponding
problem of generating an interior grid is considered in Chap. 13.

Computational techniques for inviscid flows are presented in Chap. 14
for incompressible, supersonic and transonic conditions. In Chapt. 15
methods are described for predicting the flow behaviour in boundary
layers.

For many steady flows with a dominant flow direction it is possible to
obtain accurate flow predictions, based on reduced forms of the Navier-
Stokes equations, in a very efficient manner. Such techniques are developed
in Chap. 16. In Chaps. 17 and 18 specific computational methods are dis-
cussed for separated flows, governed by the incompressible and compres-
sible Navier-Stokes equations respectively.

In preparing this textbook I have been assisted by many people, some of
whom are acknowledged in the Preface of Vol. 1. However, the responsi-



A% Preface

bility for any errors or omissions remaining rests with me. Any comments,
criticism and suggestions that will improve this textbook are most welcome
and will be gratefully received.

Sydney, October 1987 C. A.J. Fletcher
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11. Fluid Dynamics: The Governing Equations

In this chapter, equations will be developed that govern the more common
categories of fluid motion. Subsequently, various simplifications of these equations
will be presented and the physical significance of these simpler equations discussed.
The simplifications often coincide with limiting values of particular nondimen-
sional numbers (Sect. 11.2.5), e.g. incompressible flow is often associated with very
small values of the Mach number.

A fluid is categorised as a substance which cannot withstand any attempt to
change its shape when at rest. Consequently, a fluid cannot sustain a shear force
when at rest, as can a solid. However, a fluid can sustain and transmit a shear force
when in motion. The proportionality between the shear force per unit area (or
stress) and an appropriate velocity gradient defines the viscosity of the fluid
(Sect. 11.1). Fluids include both liquids and gases. The two fluids that occur most
often, naturally or in flow machinery, are water (often in the liquid phase) and air.

Fluids, whether liquids or gases, consist of molecules which are individually in a
state of random motion. The large-scale motion of a fluid adds a uniform or slowly
varying velocity vector to the motion of each molecule. If a large enough sample of
molecules is considered, (one cubic millimetre of air at normal temperature (15°C)
and pressure (101 kPa) contains approximately 3 x 10'® molecules), the individual
molecular motion is not detectable and only the large-scale (macroscopic) motion
is perceived. By assuming that the various properties of the fluid in motion,
pressure, velocity, etc., vary continuously with position and time (continuum
hypothesis) it is possible to derive the equations that govern fluid motion without
regard to the behaviour of the individual molecules.

However, for flows at very low density, e.g. re-entry vehicles travelling through
the outer parts of the atmosphere, the continuum hypothesis is not appropriate and
the molecular nature of the flow must be taken into account. This also dictates the
choice of appropriate computational techniques (Bird 1976).

11.1 Physical Properties of Fluids

The thermodynamic state of a small volume of fluid in equilibrium (i.e. uniform in
space and time) is defined uniquely by specifying two independent thermodynamic
properties e.g. for air, pressure and temperature would be appropriate. Other
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thermodynamic properties, such as density or internal energy, are then functions of
the two primary thermodynamic properties.

For air at normal temperature and pressure the various thermodynamic
properties are related by the ideal gas equation

p=0RT , (11.1)

where p is the pressure, measured in kPa, g is the density, measured in kg/m3, T is
the (absolute) temperature, measured in K, and R is the gas constant. For air,
R=0.287 kJ/kgK. It is not possible to write down a simple algebraic equation of
state connecting the thermodynamic properties for water, but the relationship is
contained implicitly in steam tables (e.g. van Wylen and Sonntag 1976,
pp. 645-669).

The pressure is defined as the force per unit area and has the same dimensions
as a stress. The pressure on a surface acts normal to the surface. Pressure is an
important property since an integration of the pressure distribution over the
surface of an immersed body will determine major forces (e.g. form drag, lift) and
moments acting on the body. For fluids at rest the forces acting on a small volume
of fluid due to the local pressure gradient are typically balanced by the force due to
gravity, which gives rise to the following equation for the hydrostatic pressure:

Ap=cgh , (11.2)

where h is the height over which the change in pressure is measured and g is the
acceleration due to gravity. Equation (11.2) may also hold for fluids in motion,
under certain circumstances. For many geophysical flows the pressure variation in
the vertical direction is given approximately by (11.2).

Variation in temperature of a fluid may be due to the processes of heat transfer
if the fluid is in contact with a substance at a different temperature or if latent heat
release occurs. The temperature variation may also be influenced by the com-
pression of the fluid, which might be due to the motion in high speed flow or due to
the weight of the fluid in atmospheric flows.

The density is the mass per unit volume. For gases, changes in density are
connected to changes in the pressure and temperature through the ideal gas
equation (11.1). However, for liquids very substantial changes in pressure are
necessary to alter the density, so that water (in the liquid phase) is often treated as
an incompressible (constant density) fluid. The properties of air and water for
different values of pressure, temperature and density are shown in Tables 11.1 and
11.2, respectively.

For fluids in motion, the concept of thermodynamic equilibrium must be given
a local interpretation so that equations like (11.1) are still valid. But now the
properties are functions of position and time, i.e.

p=p(x,y,z1t), o0=0(x,y,2z1t and T=T(x,y,z1t) .

In addition, it is necessary to describe the motion uniquely. Here we use the
Eulerian description. That is, the values of the velocities and the thermodynamics
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Table 11.1. Properties of air at atmospheric pressure

Dynamic Thermal Thermal Specific
Temperature, Density, Viscos., conduc., diffus., Prandtl heat
T o ux10° k ax10° number, ratio,
(K] [kg/m*] [kg/ms] [W/mK]  [m?*/s] Pr Y
100 3.6010 0.6924 0.00925 0.2501 0.770 1.39
300 1.1774 1.983 0.02624 2.216 0.708 1.40
500 0.7048 2.671 0.04038 5.564 0.680 1.39
900 0.3925 3.899 0.06279 14.271 0.696 1.34
1900 0.1858 6.290 0.11700 48.110 0.704 1.28

Table 11.2. Properties of water for saturated conditions

Dynamic Thermal Thermal
Temperature, Pressure, Density, viscos., conduc., diffus., Prandtl
T P o) ux10° k ax 10% number
[°C] [kPa] [kg/m*] [kg/ms] [WmK]  [m?/s] Pr
0.01 0.611 1002.28 179.2 0.552 0.01308 13.6

40 7.384 994.59 65.44 0.628 0.01512 4.34
100 101.35 960.63 28.24 0.680 0.01680 1.74
200 1553.8 866.76 13.87 0.665 0.01706 0.937
300 8581.0 714.26 9.64 0.540 0.01324 1.019

properties are given at fixed locations (x, , z, t) in the space-time domain. The
alternative Lagrangian description follows individual fluid particles treating their
position and thermodynamic properties as dependent variables. The connection
between the Eulerian and the Lagrangian representation is discussed by von
Schwind (1980, p. 22).

For fluids in motion, the ability to transmit a shear force introduces the
property of dynamic viscosity. Consider the motion of a plane surface with velocity
U parallel to a second stationary plane surface (Fig. 11.1).

Fluid adjacent to the upper surface moves with the velocity U and exerts a
resisting force on the plate of 74, where A4 is the surface area of the upper plate and
7 is the shear stress. For a given element in the fluid two shear forces (-1 1) are felt,
to the right at the top and to the left at the bottom. The fluid adjacent to the bottom

] .
—> T¢I
h -—g—>
y 7?e_|'.e

Plane flow Fig. 11.1. Plane flow parallel to a stationary surface
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surface exerts a drag force T4 on the lower fixed plate. It is found empirically that
the shear stress is directly proportional to the velocity gradient, du/0y, i.e.

r=u5; , (11.3)

where the constant of proportionality, u, is the (dynamic) viscosity. Viscosity is
measured in kg/ms. For this example, the shear stress, 7, is constant; it follows that
the velocity distribution is given by

4
= (11.4)

Q=

The relationship (11.3) defines Newtonian fluids. Flows involving air or water
satisfy (11.3). Non-Newtonian fluids, which do not satisfy (11.3), are described by
Tanner (1985).

The viscosity of gases like air is, to a close approximation, a function of
temperature alone (for normal temperatures and pressures). For air the viscosity
increases approximately like 7°-76, where T is the absolute temperature. Typical
values are given in Table 11.1. The viscosity of liquids like water is a weak function
of pressure but a strong function of temperature. In contrast to the behaviour for
gases, the viscosity of liquids typically decreases rapidly with increasing tem-
perature. Representative values for water are given in Table 11.2.

For flow problems involving temperature changes, Fourier’s law indicates that
the local rate of heat transfer is a linear function of the local temperature gradient,
ie.

oT
ox; ’

0,=—k (11.5)

where Q, is the rate of the heat transfer per unit area in the x; direction and k is the
thermal conductivity. The similarity in structure between (11.5) and (11.3) is
noteworthy. If the temperature of the two plates in Fig. 11.1 were different, (11.5)
indicates that there would be a heat transfer through the fluid, given by

. oT
0,=—k5, - (11.6)

The thermal conductivity is measured in W/mK. Like viscosity, the thermal
conductivity increases with temperature for gases. However, for liquids such as
water the thermal conductivity rises slightly with temperature in the range
0°-100°C at a pressure of one atmosphere. Typical values for the thermal conduc-
tivities of air and water are shown in Tables 11.1 and 11.2.

Because of the way that viscosity and thermal conductivity appear in the
momentum (11.31) and energy (11.38) equations it is convenient to define the
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kinematic viscosity v and the thermal diffusivity a by

k
v=£ and ao=—,

o ¢y

where c, is the specific heat at constant pressure. Both v and « are diffusivities,
controlling the diffusion of momentum (or vorticity) and heat, respectively. Both v
and o are measured in m?/s. For gases like air both v and o increase with
temperature (Table 11.1). For liquids like water the kinematic viscosity v falls
rapidly with increasing temperature but the thermal diffusivity « increases slightly
(Table 11.2).

For a discussion of the fluid properties, particularly in relation to the under-
lying molecular behaviour, the reader is referred to Lighthill (1963) or Batchelor
(1967, pp. 1-60). Eckert and Drake (1972) provide a tabulation of the properties of
common fluids.

11.2 Equations of Motion

The general technique for obtaining the equations governing fluid motion is to
consider a small control volume through which the fluid moves, and to require that
mass and energy are conserved, and that the rate of change of the three components
of linear momentum are equal to the corresponding components of the applied
force. This produces five equations which, when combined with an equation of
state, provide sufficient information for the determination of six variables: p, o, T, u,
v, w typically. For flows associated with combustion and some geophysical flows,
more than one species will be present. Each new species requires an additional
(species conservation) equation. For some flow problems not all six variables will
be involved and less than six equations will be required.

11.2.1 Continuity Equation

For an arbitrary control volume V fixed in space and time (Fig. 11.2), conservation
of mass requires that the rate of change of mass within the control volume is equal
to the mass flux crossing the surface S of V; i.e.

d
EIQdV= —J.Qv-ndS s (11.7)
| 4 S

Volume, V

Fig. 11.2. Conservation of mass
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where n is the unit (outward) normal vector. Using the Gauss (divergence) theorem
(Gustafson 1980, p. 35), the surface integral may be replaced by a volume integral.
Then (11.7) becomes

| [6—9+ V-(Qv):|dV=0 (11.8)
v ot
where V- (ov)=div gv. Since (11.8) is valid for any size of V, it implies that

% V- (e0=0 (11.9)

which is the mass-conservation or continuity equation. In Cartesian coordinates
(11.9) becomes

2t solou 5 (@0 + (W)= (11.10)

It is convenient to collect all the density terms together and to write (11.10) as

1/0 0 0 0 ou 0v 0
5<—Q+ A Q>+< e il w>—0, (11.11)

ot 0x dy 0 0x 6 17)
or
1<D9>+@ 0, (11.12)
o\ Dt

where D/Dt is called the time derivative following the motion or the material
derivative and 2 is called the dllatatlon For flows of constant density (e.g.
incompressible ﬂow) (11.12) reduces to

¥

o Ou a* ow

for both steady and unsteady flow.

11.2.2 Momentum Equations: Inviscid Flow

Newton’s second law of motion states that the time rate of change of linear
momentum is equal to the sum of the forces acting. For a small element of fluid
treated as a closed system (i.e. no flow across its boundaries) Newton’s second
law is

2 fovav.=YF . (11.14)

where subscript cs denotes a closed system.
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For a control volume V fixed in space and time with flow allowed to occur

across the boundaries (Fig. 11.3), the following connection with the closed system is
available (Streeter and Wylie 1979, p. 93):

%jgvchs=§ %(Qv)dV+jgv(v-n)dS . (11.15)
14 S

Volume, V

Fig. 11.3. Control volume ge-
ometry for Euler’s equations

In (11.15) pv is the momentum and v-n is the velocity normal to the surface of the
control volume. By the Gauss theorem, (11.15) becomes

0
dijQVchs=j<a_(QV)+V‘(QVV)>dV . (11.16a)
t v\ ot
By expanding (11.16a) and making use of (11.9), one obtains
d Dv
—)ovdV=) o—dV, (11.16b)
dt'[ ;[ Dt

where Dv/Dt=0v/0t+v-Vv. Dv/Dt is the
acceleration.
Thus, (11.14) becomes

change of v or the

Dv
!/thdV—ZF, (11.17)
i.e. “mass x acceleration =force”.

Contributions to the summation XF come from forces acting at the surface of
the control volume (surface forces) and throughout the volume (volume or body
forces). The most common volume force is the force due to gravity and this is the
only volume force considered here. The nature of the surface forces depends on
whether the fluid viscosity is taken into account or not. Initially, an inviscid fluid
will be assumed, in which case the only surface force is due to the pressure, which

acts normal to the surface. Thus, the right-hand side of (11.17) can be written

EF={ofdV—{pnds , (11.18)
14 N



