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Preface

The present book is meant as a text for the undergraduates in the science
or engineering who are taking a course on Functions of a Complex Variable
and Integral Transforms in English in China. Before taking the course, the
students have completed at a course in Mathematical Analysis for Engineer-
ing. The full book is suitable for a one-semester course (48 hours).

In this text, the students will find abundant motivation, examples, prob-
lems and applications. Each section includes examples and problems to help
the student master the material as it is presented.

The book essentially decomposes in two parts.

The first part, Chapter 1 through 6, is Functions of a Complex Variable.
In this part, the theory of analytic functions of a complex variable will be
introduced.

The functions of a complex variable (i.e. the complex analysis) was devel-
oped in the nineteenth century, mainly by Augustion Cauchy (1789~1857),
later his theory was made more rigorous and extended by such mathemati-
cians as Peter Dirichlet (1805~1859), Karl Weierstrass (1815~1897), and
Georg Friedrich Riemann (1826~1866).

Complex analysis has become an indispensable and standard tool of the
working mathematician, physicist and engineer. Neglect of it can prove to
be a severe handicap in most areas of research and application involving
mathematical ideas and techniques.

The second part, Chapter 7 through 8, is integral transforms, Fourier
transform and Laplace transform.

Transforms that named for Jean Baptiste Joseph Fourier(1768~1830) and
Pierre Simon Laplace(1749~1827), are well known as providing techniques
for solving problems in linear system those transforms play an important
part in the theory of many branches of science. While they may be regarded
as purely mathematical functional, as is customary in the treatment of other
transforms, they also assume in many fields just as definite a physical meaning
as the functions from which they stem.
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Chapter 1
Complex Numbers and Functions of a
Complex Variable

1.1 Complex numbers and its four fundamental operations

1. Introduction to complex numbers

As early as the sixteenth century Girolamo Cardano (Italian, 1501~1576)
considered quadratic (and cubic) equations such as 2% + 2z + 2 = 0, which
is satisfied by no real number x, for example —1 % /—1. Cardano noticed
that if these “complex numbers” were treated as ordinary numbers with the
multiplication rule that /—1-1/—1 = —1, they did indeed solve the equations.

The important expression /-1 is now given the widely accepted desig-
nation i = v/—1. (This convention is not followed by the electrical engineers
who prefer the symbol j = /-1 since they wish to reserve the symbol i for
electric current.)

It is customary to denote a complex number:

z=zx+iy.
The real numbers z and y are known as the real and imaginary parts of z,
respectively, and we write
Rez =z, Imz = y.
Two complex numbers are equal whenever they have the same real parts and
the same imaginary parts, i.e. z2; = 2 if and only if z; = 9 and y; = ys.
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In what sense are these complex numbers an extension of the real 7 We
have already said that if ¢ is a real, we also write to stand for a+0i. In other
words, we are this regarding the real numbers as those complex numbers
a+ bi, where b = 0. If in the expression a + bi the term a = 0. We call a pure
imaginary number.

2. Four fundamental operations

The addition and multiplication of complex numbers are the same as for
real numbers.

(@1 +iy1) £ (z2 + iye) = (z1 £ x2) +i(y1 L 32),
(z1 + iy1)(z2 + iy2) = (2122 — Y1¥y2) + i(Z1Y2 + ZT21)-

Observe that the right-hand sides of these equations can be obtained by
formally manipulating the terms on the left as if they involved only real
numbers and by replacing i? by —1 when it occurs. If z and w are complex

numbers with w # 0, then the symbol z/w means zw~!. We call z/w the

quotient of z by w. Thus z71 = =.

If zo +iys # 0,

zitiy _ (21 +iy)(e2 —ige) _ (2122 + 319) + (%291 — Taye)
T +iye (22 +iye)(x2 —iy2) =3+ 93

In short, all the usual algebraic rules for manipulating real numbers,
fractions, polynomial, and so on hold in complex analysis.

Formally, the system of complex numbers is a field.

The crucial rules for a field, stated here for reference only, are

additive rules:

(i) z+w=w+z,

(i) z+ (w+8) = (2 +w) +s,

(iif) 240 = 2,

(iv) z 4+ (—2) =0.

multiplication rules:

(i) zw = wg,

(ii) (2w)s = z(ws),

(iii) 12 = 2,

(iv) 2(z71) =1 for z #0.

distributive law:
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z(w + 8) = zw + zs.

Theorem 1.1.1. The complex numbers form a field.

If the usual ordering properties for real are to hold, then such an ordering
is impossible for complex.

1.2 Geometric representation of complex numbers

1. Complex numbers are represented by the points and
vectors in the plane

A complex number may be thought of geometrically as a (two-dimensional)
vector and pictured as an arrow from the origin to the point in R? given by
the complex number

(z,y) =z +yi.

Complex numbers can be defined as ordered pairs (z,y) of real numbers that
are to be interpreted as points in the plane called the complez plane C with
rectangular coordinates = and y (Figure 1.1). Because the points (z,0) € R?
correspond to real numbers, the horizontal or x axis is called the real axis,
the vertical axis (y axis) is called the imaginary axis.

Tmaginary axis (y axis) 4 z=a+ib

P

Real axis (x axis)

Figure 1.1 vector representation of complex numbers

2. Modulus and argument

The length of the vector (a,b) = a + ib is defined as r = va? + b2 and
suppose that the vector makes an angle § with the positive direction of the
real axis, where —7 < 6 < 7 (Figure 1.2). Thus tané = b/a. Since a = r cos @
and b = r sin , we thus have a+bi = 7 cos 8+ (r sin §)i = r(cos 8+isin#). This
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way writing the complex number is called the polar coordinate representation.

+
5

& r sin@

~
‘uniinininiyinielinind Y

r cos@

Figure 1.2  polar coordinate representation of complex numbers

The length of the vector z = a + ib is denoted |z| and is called the norm,
or modulus, or absolute value of z. The angle 6 has an infinite number of
possible values, including negative ones, that differ by integral multiples of
2m. BEach value of 6 is called the argument oramplitude of the complex number
z, and the set of all such values is denoted by Argz. The principal value of
0 is denoted @ = argz, where —7 < 6 < wn. If z = 0, the coordinate 6
is undefined; and so it is always understoed that z # 0 whenever Argz is
discussed.

Argz = arg z + 2km, k=0,+£1,4£2,.--, —w<argz< .
We have Y
arctan ot z€lorlV,
argz = a.rcta.n% + z eIl
a.rcta.n% -, z € IIL

1.3 Complex conjugates

1. Definition and properties

If z = a + ib, then Z, the complex conjugate of z, is defined by Z = a — ib
(Figure 1.3).
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yi

z=a+ib

» X

Z=a-ib

Figure 1.3 complex conjugation

Theorem 1.3.1.

N)z+7=247.

(i) 22/ =% - 7.

(i) z/2' =%/7 for 2/ # 0.

(iv) 2Z = |z|2, and hence z # 0, we have z~! = Z/|z|2.
(v) z =z if and only if z is real.

(vi) Rez = Zrz and Imz = 22—iz‘

(vil) Z = 2. v

Proof. We will omit it.

2. Triangle inequality

We turn now to the triangle inequality, which provides an upper bound
for the modulus of the sum of two complex numbers and

|21 + 22| < |21] + |22]-

This important inequality is geometrically evident in Figure 1.4, since it is
merely a statement that the length of one side of a triangle is less than or
equal to the sum of the lengths of the other two sides. And we have

Theorem 1.3.2.

(i) |z2'] = |2] - |#/|.

(ii) If 2’ # 0, then |z/2/| = |2|/|#'|.
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(i) —|]2] < Rez < |z] and —|2| < Imz < ||, that is, |Rez| < |2| and
[Imz| < |z].

(iv) [z] = lal.

(v) |z + 2| < |z| +|2].

(vi) |z = #| > ||l - 12|

(vii) 211 + -+ + 2aw0al < VAP F - F [zl 0rP F - T TP

Proof. We will omit it.

YA

o

Figure 1.4 triangle inequality

1.4 Powers and roots

Polar representation of complex numbers simplifies the task of describing
geometrically the product of two complex numbers. '
Let 23 = r1(cos 81 +isiné,) and zo = ro(cos 2 + isinby), t.hen

2122 = r172([cOs 0] - cos By — sin O - sin by
+i[cos 0; - sin @y + cos 6, - sin 64])
= ry72[cos(61 + 62) + isin(f; + 62)].

Theorem 1.4.1. |z122| = |21] - |22 and arg(z;22) = arg z; + arg 2s.

As a result of the preceding discussion, the second equality in Theorem
1.4.1 should be written as argz;29 = argz + argzp(mod 27). “mod 27"
means that the left and right sides of the equation agree after addition of a
multiple of 27 to the right side.

Theorem 1.4.2(De Moivre formula). If 2 =r(cos@+isiné) and n is a
positive integer, then 2" = r™(cos nf + isin nf).
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Theorem 1.4.3. Let w be a given (nonzero) complex number with
polar representation w = r(cos 6 + isin 8), then the nth roots of w are given
by the n complex numbers

2 = Q/F[cos<f+2k—”)+isin(g+gk—’f)], k=0,1,-- ,n— L.
n n n

n

Example 1.4.1. Solve z3 = —1 for z.

Solution.
2k 2k
z=v-1= | -1 (cos7r+3 W+isin7r+3 7r)
T 1 V3
cos§+1s1n§ §+71, k=0,
= ¢ cosw+isinmw = -1, k=1,
5 5
cos?ﬂ--f-iSin?ﬂ _%+§i, k=2

Example 1.4.2. Find all roots of v/—1i, and write in the triangle form.
Solution. Let z = +/—i, then we have

3 3
z =r(cos@ +isinf) = —i = cos §7r+isin 27

22 =r%(cos20 +isin20), r’=1, 20 = gﬂ + 2k,

hence 3
’I‘=1, 0——‘17T+k7ra k=0’1’

cos37r+isin§7r

— 4 47’
o cosz7r+isinz7r
4 4

1.5 Riemann sphere and infinity

For some purposes it is convenient to introduce a point “oc” in addition
to the points z € C. The complex plane together with this point is called
the extended complex plane. To visualize the point at infinity, one can think
of the complex plane as passing through the south pole S of a unit sphere at
z = 0 (Figure 1.5). To each point z in the plane there corresponds exactly
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one point @) on the surface of the sphere. The point @ is determined by
the intersection of the line through the point z and the north pole N of the
sphere with that surface. In like manner, to each point on the surface of the
sphere, other than the north pole N, there corresponds exactly one point 2
in the plane. By letting the north pole N of the sphere corresponds to the
point at infinity, we obtain a one to one correspondence between the point
of the sphere and the points of the extended complex plane. The sphere is
known as the Riemann sphere.

Figure 1.5 complex sphere

Formally we add a symbol “00” to C to obtain the extended complex plane
C and define operations with oo by the “rules”

a—+ 00 =00+ a = 00,
o0 + 00 = 00,
a:-00=00"a=00,
00 - 00 = 00,

=00 (a # 0), §=0.

ol

1.6 Complex number sets

1. Fundamental concepts

The first concept is a d- neighborhood of a given point zp. It consists of all
points of z lying inside but not on a circle centered at 2y and a specified pos-
itive radius 6: Ns(z) = {z||2 — 20| < 6}. When the value of § is understood
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or is immaterial in the discussion, it is often referred to as just a neighbor-
hood. Occasionally, it is convenient to speak of a deleted 6- neighborhood of
a given point zg: {z|0 < |z — 2| < }.

A point 2o is said to be an interior point of the set E whenever there
is some neighborhood of 2z that contains only points of E. If there exists
Njs(20) C E, it is called an exzterior point of E when there exists a neighbor-
hood of it containing no points of E. If 2y is neither of these, it is a boundary
point of E. A boundary point is, therefore, a point all of whose neighbor-
hoods contain points in E and points not in E. The totality of all boundary
points is called the boundary of E,denoted by OF.

A set E is open if and only if each of its points is an interior point of E.

2. Domain and curve

An open set S is connected if each pair of points z; and z; in it can
be joined by a polygonal line, consisting of a finite number of line segments
joined end to end, that lies entirely in S.

An open set that is connected is called a domain.

Acurve T : z = 2(t) = z(t) +iy(t) (o <t < P) if z(t), y(t) € Clo, 8],
then I is continuous and if t; # to = 2(t1) # 2(t2), then I' is called a simple
curve.

If 2/(t) = 2'(t) +iy'(¢t) # 0 and 2'(¢), ¥/(t) € Cle, 8], T is called a smooth
curve. Finite smooth curves are called a piecewise smooth curve.

A domain D C C is called the simply connected if and only if for every
simply closed curve 7 in D, the inside of +y also lies in D, or else it is called
the multiple.connected domain.

1.7 Functions of a complex variable

1. Definition and geometry significance

Let G C C be a set of complex numbers. A function f defined on G is
a rule that assigns to each z in G a complex number w. The number w is
called the value of f at z and is denoted by f(z). That is, w = f(2). G is
the domain of definition of f.

It must be emphasized that both a domain of definition and a rule are
needed in order for a function to be well defined. When the domain of
definition is not mentioned, we agree that the largest possible set is be taken.



