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SERIES FOREWORD

Artificial intelligence is the study of intelligence using the ideas and methods
of computation. Unfortunately, a definition of intelligence seems impossible
at the moment because intelligence appears to be an amalgam of so many
information-processing and information-representation abilities.

Of course psychology, philosophy, linguistics, and related disciplines offer
various perspectives and methodologies for studying intelligence. For the
most part, however, the theories proposed in these fields are too incomplete
and too vaguely stated to be realized in computational terms. Something
more is needed, even though valuable ideas, relationships, and constraints
can be gleaned from traditional studies of what are, after all, impressive
existence proofs that intelligence is in fact possible.

Artificial intelligence offers a new perspective and a new methodology.
Its central goal is to make computers intelligent, both to make them more
useful and to understand the principles that make intelligence possible. That
intelligent computers will be extremely useful is obvious. The more profound
point is that artificial intelligence aims to understand intelligence using the
ideas and methods of computation, thus offering a radically new and different
basis for theory formation. Most of the people doing artificial intelligence
believe that these theories will apply to any intelligent information processor,
whether biological or solid state.

There are side effects that deserve attention, too. Any program that will
successfully model even a small part of intelligence will be inherently massive
and complex. Consequently, artificial intelligence continually confronts the
limits of computer science technology. The problems encountered have been
hard enough and interesting enough to seduce artificial intelligence people
into working on them with enthusiasm. It is natural, then, that there has
been a steady flow of ideas from artificial intelligence to computer science,
and the flow shows no sign of abating.

The purpose of this MIT Press Series in Artificial Intelligence is to provide
people in many areas, both professionals and students, with timely, detailed
information about what is happening on the frontiers in research centers all

over the world.

Patrick Henry Winston Michael Brady
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Chapter 1

Introduction

1.1 We Would Like to Make a Thinking Machine

Someday, perhaps soon, we will build a machine that will be able to perform
the functions of a human mind, a thinking machine. One of the many prob-
lems that must be faced in designing such a machine is the need to process
large amounts of information rapidly, more rapidly than is ever likely to be
possible with a conventional computer. In this book I describe a new type
of computing engine called a Connection Machine; it computes through the
interaction of many, say a million, simple identical processing/memory cells.
Because the processing takes place concurrently, the Connection Machine
Computer can be much faster than a traditional computer.

Our Current Machines Are Too Slow

Although the construction of an artificial intelligence is not yet within our
reach, the ways in which current computer architectures fall short of the
task are already evident. Consider a specific problem. Let us say that we
are asked to describe, in a single sentence, the picture shown in figure 1.1.
With almost no apparent difficulty a person is able to say something like
“It is a group of people and horses.” This is easy for us. We do it almost
effortlessly. Yet for a modern digital computer it is an almost impossible
task. Given such an image, the computer first has to process the hundreds
of thousands of points of visual information in the picture to find the lines,
the connected regions, and the textures of the shadows. From these lines
and regions it then constructs some sort of three-dimensional model of the
shapes of the objects and their locations in space. Then it has to match
these objects against a library of known forms to recognize the faces, the
hands, the folds of the hills, etc. Even this is not sufficient to make sense of
the picture. Understanding the image requires a great deal of commonsense

knowledge about the world. For example, to recognize the simple waving
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Figure 1.1 The Watering Place, Pablo Picasso, 1905.

lines as hills, one needs to expect hills; to recognize horses’ tails, one needs
to expect a tail at the end of a horse.

Even if the machine had this information stored in its memory, it would
probably not find it without first considering and rejecting many other pos-
sibly relevant pieces of information, such as that people often sit on chairs,
that horses can wear saddles, and that Picasso sometimes shows scenes from
multiple perspectives. As it turns out, these facts are all irrelevant for the
interpretation of this particular image, but the computer would have no a
priori method of rejecting their relevance without considering them. Once
the objects of the picture are recognized, the computer then has to formulate
a sentence which offers a concise description. This involves understanding
which details are interesting and relevant and choosing a relevant point of
view. For example, it probably would not be satisfactory to describe the
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picture as “Two hills, partially obscured by lifeforms,” even though this may
be accurate.

We know just enough about each of these tasks so that we might plausibly
undertake to program a computer to generate one-sentence descriptions of
simple pictures, but the process would be tedious, and the resulting program
would be extremely slow. What the human mind does almost effortlessly
would take the fastest existing computers many days. These electronic giants
that so outmatch us in adding columns of numbers are equally outmatched

by us in the processes of symbolic thought.

The Computer versus the Brain

So what’s wrong with the computer? Part of the problem is that we do not
yet fully understand the algorithms of thinking. But part of the problem
is speed. One might suspect that the reason the computer is slow is that
its electronic components are much slower than the biological components
of the brain, but this is not the case. A transistor can switch in a few
nanoseconds, about a million times faster than the millisecond switching
time of a neuron. A more plausible argument is that the brain has more
neurons than the computer has transistors, but even this fails to explain
the disparity in speed. As near as we can tell, the human brain has about
10'° neurons, each capable of switching no more than a thousand times a
second. So the brain should be capable of about 10'3 s;zvitching events per
second. A modern digital computer, by contrast, may have as many as 10°
transistors, each capable of switching as often as 10° times per second. So
the total switching speed should be as high as 10'® events per seconds, or
10,000 times greater than the brain. Thus the sheer computational power of
the computer should be much greater than that of the human. Yet we know
the reality to be just the reverse. Where did the calculation go wrong?

1.2 Classical Computer Architecture Reflects
Obsolete Assumptions

One reason that computers are slow is that their hardware is used extremely
inefficiently. The actual number of events per second in a large computer
today is less than one-tenth of one percent of the number calculated in section
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1.1. The reasons for the inefficiency are partly technical but mostly historical.
The basic forms of today’s architectures were developed under a different set
of technologies, when different assumptions from those that are appropriate
today were applied. The machine described here, the Connection Machine,
is an architecture that better fits today’s technology and, I hope, better fits
the requirements of a thinking machine.

A modern large computer contains about 1 m? of silicon. This square
meter contains approximately one billion transistors which make up the pro-
cessor and memory of the computer. The interesting point here is that both
the processor and memory are made of the same stuff. This was not al-
ways the case. When von Neumann and his colleagues were designing the
first computers, their processors were made of relatively fast and expensive
switching components, such as vacuum tubes, whereas the memories were
made of relatively slow and inexpensive components, such as delay lines or
storage tubes. The result was a two-part design that kept the expensive vac-
uum tubes as busy as possible. We call this two-part design, with memory
on one side and processing on the other, the von Neumann architecture, and
it is the way that almost all computers are built today. This basic design has
been so successful that most computer designers have kept it even though
the technological reason for the memory/processor split no longer is justified.

The Memory /Processor Split Leads to Inefficiency

In a large von Neumann computer almost none of its billion or so transistors
do any useful processing at any given instant. Almost all the transistors
are in the memory section of the machine, and only a few of those memory
locations are accessed at any given time. The two-part architecture keeps
the silicon devoted to processing wonderfully busy, but this is only 2 or 3
percent of the silicon area. The other 97 percent sits idle. At a million
dollars per square meter for processed, packaged silicon, this is an expensive
resource to waste. If we were to take another measure of cost in the computer,
kilometers of wire, the results would be much the same: Most of the hardware
is in memory, so most of the hardware is doing nothing most of the time.
As we build larger computers, the problem becomes even worse. It is
relatively straightforward to increase the size of memory in a machine, but

it is far from obvious how to increase the size of the processor. The result is
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that as we build bigger machines with more silicon, or, equivalently, as we
squeeze more transistors into each unit of area, the machines have a larger
ratio of memory to processing power and are consequently even less efficient.
This inefficiency remains no matter how fast we make the processor because
the length of the computation becomes dominated by the time required to
move data between processor and memory. This is called the von Neumann

bottleneck. The bigger we build machines, the worse it gets.

1.3 Concurrency Offers a Solution

The obvious answer is to get rid of the von Neumann architecture and build
a more homogeneous computing machine in which memory and processing
are combined. It is not difficult today to build a machine with hundreds
of thousands or even millions of tiny processing cells which has a raw com-
putational power that is many orders of magnitude greater than the fastest
conventional machines. The problem lies in how to couple the raw power
with the applications of interest, how to program the hardware to the job.
How do we decompose our application into hundreds of thousands of parts
that can be executed concurrently? How do we coordinate the activities of
a million processing elements to accomplish a single task? The Connection
Machine architecture was designed as an answer to these questions.

Why do we even believe that it is possible to perform these calculations
with such a high degree of concurrency? There are two reasons. First, we
have the existence proof of the human brain, which manages to achieve the
performance we are after with a large number of apparently slow switching
components. Second, we have many specific examples in which particular
computations can be achieved with high degrees of concurrency by arranging
the processing elements to match the natural structure of the data.

Image Processing: One Processor per Pixel

In image processing, for example, we know that it is possible to perform two-
dimensional filtering operations efficiently using a two-dimensionally con-
nected grid of processing elements. In this application it is most natural to
store each point of the image in its own processing cell. A 1000 x 1000 point

image would use a million processors. In this case, each step of the calcu-
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Figure 1.2 In a machine vision application, a separate processor/memory
cell processes each point in the image. Because the computation is
two-dimensional the processors are connected into a two-dimensional grid.

lation can be performed locally within a pixel’s processor or through direct
communication with the processors’ two-dimensionally connected neighbors.
(See figure 1.2.) A typical step of such a computation involves calculating
for each point the average value of the points in the immediate neighbor-
hood. Such averages can be computed simultaneously for all points in the
image. For instance, to compute the average of each point’s four immediate
neighbors requires four concurrent processing steps during which each cell
passes a value to the right, left, below, and above. On each of these steps
the cell also receives a value from the opposite direction and adds it to its
accumulated average. Four million arithmetic operations are computed in
the time normally required for four.

VLSI Simulation: One Processor per Transistor

The image processing example works because the structure of the problem
matches the communication structure of the cells. The application is two
dimensional, the hardware is two dimensional. In other applications the nat-



