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AUTHOR'’S. PREFACE

This book is intended to give an introduction to the field of partial differentiai equations.
The presentation is intentionally not too brief so that graduate students should be able to
read it without serious difficulty. In addition to requiring a thorough knowledge of
differential and mteqral calculus as well as of the theory of ordinary differential equations,
it presupposes a few results from complex variables, and, in its last part, a few from func-
tional analysis and real variables.

The goals of the book necessitated a careful selection of material. Of course, in the
framework of this “guidebook,” problems that today stand in the foreground of scientific
development could only be taken intb consideration'pcriphcrally-.' However, the author
hopes that his efforts to present some of these can be felt.

I'n Part I, simple examples are treated, namely, the wave, potential, and heat equations.
There the Gauss integral theorem in R, appears as an important tool. Part II deals with:
the normal forms and characteristic manifolds for partial differential equations of the
second order and for systems of partial differential equations of the first order in more than
one unknown function. Here normal forms are given that can be obtained by very ele-
mentary means. In Part IIl questions of uniqueness for various-initial-value and bound-
ary-value problems are discussed, by means of the maximum-minimum principle and the
energy-integral method, respectively. Since such considerations are much simpler than
questions of existence, they are treated first; dealing with them first often brings with it the
right point of vieWw for the quc*tions of existence which are to be treated in the following two
parts. Different means of proof arec purposely selected each time in order to provide the
reader with at least a modest insight into the variety of methods. In Part IV, the method
of successive iteration and the use of the characteristic relations are discussed for hy;ierbolic
equations and systems, while the Laplace transform calculus is used for initial- and bound-
ary-value problems in hyperbolic and parabolic equations. For boundary-value problems
in elliptic equations the theory of weak solutions, together with an extended version of
Weyl’s lemma, is used. The delicate question about the assumption of the boundary
values is treated by means of a new method due to E. Wienholtz, which—though not pub-
lished so far—he has kindly made available for this book. - The last part deals with ques-
tions of existence for elliptic equations and systems, using simple tools from functional
analysis. It outlines Schauder’s technique of proof and the treatment of the eigenvaly¢.
problem, and concludes with an introduction to g boundary-value problems for elliptic
systems of the first order in two unknown functions. It is interesting here that for such



Preface v

poblems the Fredholm alternative does not hold. A part on singular problems, which
ad been planned, has been postponed for the time being.

Partidl differential equations of the first order in one unknown function have not been
included in the book, since their theory can be reduced to the theory of ordinary differential
equations; therefore their treatment perhaps belongs in a textbook on ordinary ditterential
equations. )

A few exercises are scattered through the text, among which the more diflicult ones are
iﬁd_icated by an asterisk. Their solutions are given at the end of the book. References
to the literature have been kept brief intentionally, since a small textbook is not in a position
to provide a survey of the enormous wealth of literature in this field. Fortunately there
are excellent summarizing reports that should be accessible to the reader after reading
this book. ‘ :

Formulas are numbered by section; for example, by (IV-3.19) we mean Formula 19 of
Chapter 3 in Part IV. In references to places in the same part, the number Jf the part is
omitted.

In particular, I must express my gratitude to mmy revered teacher Professor Haack for
important stimulations and suggestions. Our joint investigations and numerous seminars
on this subject have had much influence upon this book. My stay at the Institute of
Mati:ematical Sciences, New York University, during the academic year 1954-55 has
been another influencing factor. For many new points of view I have to thank Professors
L. Asgeirsson, L. Bers, R. Courant, K. O. Friedrichs, F. John, P. Lax, and L. Nirenberg.

I also wish to express my cordial gratitude to iy coworker Dr. E. Wienholtz for inany
hints and valuable suggestions which made many presentations clearer.

Further, I have to thank my secretary Mrs. L. Schroder for her cooperation in the prepa-
ration of the manuscript, Mr. H. Drucks for offering help with the proof reading and
preparing the index, Mr. K.-H. Diener and Dr. K. Jorgens for many useful remarks, and:
Mr. H. Zehle for drawing the original figures.

Last, but not least, I must thank the editor of this series of books, Professor G. Kothe,
who encouraged me to write this book, and to the publishers for their patient compliance
with my wishes.

G. HeLLwic

Berlin—Charlottenburg, July 1959.

TRANSLATOR’S NOTE

In line with the common practice in partial differential equations, coordinates of vectors
and points have been given lower indices. This is practiced uniformly except in Section
11-2.6, where concepts and notations from differential geometry-are used.

With the exception of the above and a few other inconsequential changes in notation. no
change has been made in Professor Hellwig’s text. E. GErLACH



PREFACE TO THE SECOND EDITION

After the English edition had been out of print for some time and since the originai
edition is now also no longer available, publishers and author decided to reprint the
English edition. _

It contains numerous additions as compared with the German edition, and it conforms
in its notation better to the present standard.

For an introductory course into the whole subject particularly Part 1 and Part 3 seem
especially suitable. These two parts take into account the various types of partial differen-
tial equations and are independent of Part 2.

Precisely the uniqueness questions which are dealt with in Part 3 give the proper perspec-
tive concerning the existence problems without being encumbered with the usual difficulties
of the latter.

In remembrance of our joint efforts in this field this edition will be dedicated to my
honoured teacher Professor Dr. Dr. h. c. W. Haack on the occasion of his 75th birthday
in April 1977.

‘Aachen, April 1977 G. HELLWIG
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1
INTRODUCTION

11 Definitions

A relation of the form
Fxy, X2y « - - 3 Xng Uy Ugy Ugyy o o o, Usy Uzz, Uzzy - - - 5 Uzz) =0 (1:1)

where n > 1, will be called a partial differential equation of the second order. Here (1.1) is con-

sidered in a suitable domain D of the n-dimensional space R, in the independent variables

X1, X2, . . . » X.. We look for functions u = u(xy, x3, . . . , x») which satisfy (1.1) iden-
tically in ©. Such functions u are called solutions of (1.1).

In (1.1), the partial derivatives of u are denoted in abbreviated form by indices;. that is,

_ Ou 0% .

s ax; Baime = Ox; Oxx

(1.2)

The expression (1.1) is said to be of the second order because the highest partial derivatives
which appear are of the second order.
If n = 1, then (1.1) becomes an- ordmary differential equatzon of the second order:

du d*u
'z s I'___ ey ” =
F(xi, u, o', v"’) =0 where u''= = u P

In general, even an equation of this form has infinitely many solutions u = u(x)).

From this, infinity of possible solutions we attempt to single out a unique one by intro-
ducing suitable additional conditions. Initial conditions often serve the purpose; these
arbitrarily prescribe the value of « and its first derivative at a point a:

. u(a) = u,, (@) = ur.

Frequently, boundary conditions also suffice; these arbitrarily prescribe the value of u at two
points a and b:
u(a) = uo, u(b) =

- It is readily apparent that the analogous problem for the expression (1.1) is substantially
more difficult. For the time being, discussion will be restricted to the simplest representa-
tives of (1 1).

To find representatives of (1.1) that are not cnly simple, but also typical and important,
we look to mathematical physics; many of the problems in this field reduce to partial
differential equations. Before starting in this direction, we provide some mathematical
tools.
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1.2 The Gauss Integral Theorem

Let n-dimensional space consisting of points P: (xj, x2, . . . , xn) be denoted by R,. Points
in R, will in most cases be represented in vectorial form, where

X = (X1, X2y . . . 5 Xn) (1.3)

denotes the vector representing the point 2. The inner product of two vectors 8 %, ) and the
absolute value or modulus |x| of x are given by

) = 2 e ol = (el o B (0" (1.4)
f=1 t=1

respectively. In particular, [x — y| is then the distance of the points x and y from one
another. .

In the following we briefly collect some formulas which can be found in any textbook on
differential and integral calculus. Here it suffices to consider merely R, or R; and suffi-
ciently simple domains D. ‘

By a domain D we understand an open connected point set in R.. By D we denote the closure
of D; by, the set of boundary points of D. Then D = D + D. As the simplest example
for D, we mention the ball S with center a2 = (ay, a2, . . . , a,) and radius 7. In this case
S:|lx—a|l<r,S: |x — a| =1, and §: [x — a| < 7. When n = 2, we call S a disk.

Frequently it is necessary to form volieme zntegral.r over D and surface integrals over D.
The volume element is denoted by dx = dx;dxs + - - dxa (dx isnot a vcctor) dS denotes the
surface element. For a function u(x;, xs2, . . . , x,) defined on D or D, respectively, we

" briefly write u(x). We write « € C° in D if u is continuous in D; u € C/ in D if u(x) is j times
continuously differentiable in all its variables, including all mixed derivatives up to the sth
order. The notations u(x) € C/ in D and u(x) € C¢ on D are analogous; in the latter, we
suppose that D is described by a parametric representation and consider u(x) as a function
of the parameters. The integrals are of the form

/9 u(x1, X3, . ., , Xn)dx1dxa - - dtn = /;) u(x) dx or /;.) u(x) ds, '(1 35)

respectively.
A domain D will be called a normal domain if it is bounded and simply connected and if
- it admits the application of the Gauss integral theorem; that is, if on © there is a vector
field »(x), where )

. v(x) = (n1(x), va(x), . . ., va(x)) and (y,») =1 (1.6)
such that

JoulD de = [fun@ as;  i=1,2,...,mn (1.7)

for all u(x) € C' in D. If this is the case, thé »;(x) are such that, at the points x € D where D
possesses an outer normal, the vector »(x) of (1.6) coincides with this outer normal. We

' commonly omit explicit statement of the independent variable in » and »;. In the case of
Rs, D is a closed curve and dS is to-be interpreted as ds, where s is the arc length on D. i
Note that under the stated assumptions we can choose either D or D for the domain of
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integration in the volume integral in (1.7). Whenever the limits of integration are given
explicitly, we indicate the boundary of D.

Nearly every domain D occurring in this book is such a normal domain; thus we always
neglect pointing out this fact and make special mention of the excepiions only. The
explicit assumptions that must be made about D so that D will be a normal domain are
discussed in textbooks on differential and integral calculus. Hypotheses particularly
suited to our purposes may be found in O. D. Kellogg[1] and Cl. Miiller[2].

If D is the union of several pairwise disjoint closed components

55=E:D,

so'that D is not simply connected, then the Gauss integral theorem holds too, provided that
cvery ‘®D; is a normal domain. Instead of relation (1.7), we then have

/9 w(W dr = 2 /ﬁ: w(x)vi(x) 4, t9)

where 1 is the outer normal of $ on ), and 4§’ is the surface element corresponding to D;.
If © is the unit sphere in R,: |x|] = 1, we denote its S by dw. For this surface,

_ _2[T@I _ 2 ‘ |
Wa ﬁsl-l dw = TGn I'(n/2)’ | ) (l..9)‘ .

where I'(z) is the gamma function. Of course, we have the values w; = 4x and ws = 2.
Finally, the volume of the unit ball |x| < 1 has the value w./n which can be seen as folloyvs:
If, for D in (1.7), we choose the unit ball |x| < 1 in R, and set u(x) = x;, we obtain

fl:lsldx=/=l lx.v,dw

Since »; = x; here, .summation yields

" flzlsl . - _[|=| 1 2 dw = f,,|_l él (x)? dw = Lzl_l do = w,.

i=1

If, in (1.7), we merely suppose that u(x) € C° in D and u(x) &€ C* in D, then, in general,
o ¥=(x) dx will be an improper integral, because u,, may become infinite on D. If,

however, the existence of the integral [ u.,(x) dx is required, (1.7) remains correct. See
O. D. Kcllogg[S]
1.3 Vector Fields

If the components 4'(x) of a vector field u(x) = (4!(x), ¥*(x), . . . , u*(x)) belong to C*
in , then the divergence of u is defined by

v _il oL 09, (1.10) .
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so that under use of (1.7) the Gauss integral theorem can also be written,in the form
[D div u(x) dx = fﬁ (u,) dS. (1.11)

By forming the gradient of a function u(x) & C', the vector field

cgrad u(x) = (uz, Uzpy - - - 5 Uz,) ' (1.12)
is obtained. 4

Now for two vector fields, u, v in R;, there are the notions of vector product u X v, and of
forming the rotation (curl) rot u:

u X v = (u23 — ud? ubo! — u'vd, u's? — u%'), (1.13)
rot u = (ul, — ul, ul, — ud, ul — ul). (1.14)

1.4 The Green Formulas

By the directional derivative u, of u(x) in direction of the outer normal » we understand

u, = 2 v, (1:15)

Further, we put

If we assume u(x) € C' in D; v(x) € C? in D, we obtain the first Green formula:

/5) u A dx = [s’) w, dS — [ Z U, dx = /5.) uv, dS — /9 (grad u, grad v) dx. (1.16)

i=1
Indeed, we have

/D ulAwdx = [D _E {(uos)z — ”s:”;.} dx.

i=1

If we apply formula (1.7) to the middle term here and censider (1.15), then (1.16) follows
immediately. '

According to the remark at the end of Section 1.2, it would suffice to assume u(x),
v(x) €C'in D, v(x) € C? in D, and the existence of f:) u Anv dx.

By interchanging « and v in (1.16) and then subtracting the new formula, we obtain the
second Green formula:

,/‘.D (u Anv — v Aju) dx = /s.) (uv, — vu,) dS. 117

If © is the union of several components, then using the hypotheses made for (1.8) we find
N .

j (b —vAu)dx = 2 |, (uwo, — vu,) dS’. (1.17a)
D s 19

Here we have to suppose u(x), v(x) € C? in D, or the corresponding weaker conditions.
Setting v = 1 in (1.17), we obtain the special case

[ Anudx = [5 st 45, ‘ (1.18)
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Here we have to suppose u(x) € C? in D, or, in the weakened form, z(x) € C' in D, u(x) € C?

in O, and the existence of / o Antt dx.

1.5 The Maxwell Equations

We begin with the study of partial differential equations arising in mathematical physics.
As is well known, part of the theory of electrodynamics can be deduced frorn the Maxwell
equations. In Rj, the vector fields £ and H, representing the electric and magnetic fields,
which also depend on a parameter ¢ (that is, time) are investigated:
 E(x) = (B\(x), E¥xt), B(x0),  Ei(xt) = E(, xa, xa, 0);
H(xat) = (HI(X,t), Hz(x’l)’ Ha("y‘))a H‘(x,t) == Hi(xly X2y X3, t)-
We assume they are free of sources: div £ = div Z = 0. In the volume element dx, the
electric and the magnetic energy is given by

= 5 — :
due = o (E,E) dx, dumegn 8 (H,H) dx;

the energy flow in the time d¢, through the surface element of D to the outside amounts to
(¢/4x)(E X H, v) dSdt. Further, in the time d¢, the electric energy o(E,E) dx dt in dx
will be transformed into heat. Here ¢, u, o, ¢ are nonnegative physical constants.

The law of the conservation of energy tells us that the decrease in time of the energy in
D equals the sum of the energy converted into heat in D and of the energy flowing out

through ©:
1-4d ¢ )
— - 5 Jo ((BE) + w(HH)} dx = /:D (EE) dx + /&.) (E X H,v)dS. (1.19)
_ Using (1.11) we have /;.) (EX H, v)dS = [9 div E X Hdx. Further, div E X H =
(H, rot E) — (E, rot H) is a well-known vector identity. If we substitute this in (1.19), we
see that (1.19) holds for every D whenever the equations

rot E = — g H,
where div E = div H = 0, (1.20)

rotH=§E,+4_’;E,

are satisfied. Relation (1.20) is a special case of the Maxwell equations. It is a system
of eight partial differential equations of the first order in the'six unknown functions E!,
) % AEMEREE - A

The mathematical problem consists of finding solutions E, H of (1.20) for all times ¢
which for ¢ = 0 agree with given vector fields Eo(x), Ho(x). Therefore the initial conditions

for (1.20) read
“E(x,0) = Eo(x), H(x,0) = Ho(x) where div Eq = div H, = 0. (1.21)

At first glance (1.20) might seem to be overdetermined, since the system contains more
equations than unknown functions. However, the last two scalar equations are satisfied
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for all ¢ as soon as they hold for ¢ - 0, which is the case according to (1.21). They can
therefore be omitted; namely, if we form the.divergence of the second equation (1.20), it
follows that

0=divrot B =% fi+ 5,

where div E(x,t) = f(x,t). Integration over ¢ gives
f(x,t) = C(x} (4wl

with arbitrary C(x). Now f(x,O) = 0, so that C(x) = 0, which proves that div E = 0 for
all values of ¢&. Analogously it can be shown that div # = 0.
If we make use of the vector identity

rot rot E = grad div E — A;E,

and of grad div E = 0 (since div E = 0), then, when the rotation is formed, the two vector
equations in (1.20) go over into

4 4m
AE =L Eu+5PE,  MH= 3 Ho+ 5EH, (1.22)

Here, of course, A3;E stands for (A;E', A3E?, A3;E?). Equations (1.22) are six partial
- differential equations of the second order for six unknown functions. As initial conditions—
for the time being—we have to require conditions (1.21); however, E,(x,0) and H(x,0)
can be determined by use of (1.20). Therefore, for (1.22) we obtain the initial conditions

€

E(x0) = Eo(x),  Edx0) = Ex(x), where Ey(x) = rot Ho — *™° E;
- (1.23)
H(x0) = Ho(x),  Hix0) = Hi(x), where Hy(x) = — ~rot Ey.

Obviously we can solve the problem (1.22), (1.23) if we can merely solve the initial-value
problem for an equation of the second order
4::“ u; where u(x,0) = uo(x), . u(x,8) = ui(x). (1.24)

€4 3
Azu = - u +

For ¢ = 0, (1.24) is called the wave equation in three space dimensions and one time dimen-
sion, and for ¢ 7 0 it is called the telegraph equation.

1.6, ~The Equations of Gas Dynamics

In R; we consider a compressible medium (gas) which is in motion, and whose pressure
p, density p, and velocity vector » = (v}, v? »?) are functions of x and ¢. If we neglect
viscous friction, heat conduction, and exterior forces, then Euler’s equation of motion yields

dv
gy grad p, (1.25)

and the theorem of the conservation of mass gives the eémlion of continuity
p: + div (p9) = 0. . (1.26)



