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Preface

Progress in Neural Networks is a series concerned with the advances in neural
networks—natural and synthetic. This series reviews state-of-the-art research in
modeling, analysis, design, and development of neural networks in software and
hardware areas. This series is intended to serve as a platform for detailed and
expanded discussion of topics of interest to the neural network and cognitive
information-processing communities. We hope the series will help to shape and
define academic and professional progress in this area. This series seeks contri-
butions from leading researchers and practitioners to provide its audience with a
wide variety of in-depth discussion of active research and presentation of com-
plex ideas in the neural networks field. The second volume consists of chapters
that are self-contained and tutorial in nature; however, one must have a back-
ground in general information about neural networks to appreciate the depth and
complexity of the research presented here. This series is intended for a wide
audience, those professionally involved in neural networks research, such as
lecturers and primary investigators in neural computing, neural modeling, neural
learning, neural memory, and neurocomputers.

The first chapter in this volume focuses on self-organizing neural classifier for
complex imagery. The second chapter deals with constraint satisfaction networks
for vision. The third chapter is devoted to neural networks for position, scale,
and rotation invariant pattern recognition. Chapter 4 is on generalization of back
propagation networks. Chapter 5 deals with optical implementation of closest
vector selection in neural networks. Chapters 6 and 7 are devoted to the study of
the biological basis for artificial neural networks and analysis of neuronal spike
trains. Chapter 8 is of interest to scientists in the area of unsupervised learning.
Chapter 9 focuses on neural modeling of complex systems. Chapter 10 discusses
neural systems for computation and decision making. Chapter 11 details neural
feature analysis and is of interest to scientists in neural character recognition.
Chapter 12 deals with research in graph theory aspects of neural networks and its
relation to cellular automata. Chapter 13 discusses neural networks pattern pro-
cessing and logical reasoning capabilities. The last chapter is devoted to primacy
and recency effects in back propagation learning.

This is an attempt to provide the readers with an in-depth presentation of a
specific subject without limitation on the size, shape, and content of the pre-
sented work. We adhere to all the valuable principles of integrity in research
while pursuing this endeavor. This series is the result of the hard work of about
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more than 50 reviewers who have done a great deal of work for which I am
grateful for their frank and valuable suggestions and recommendations. I would
like to thank the president of Ablex, Mr. Walter Johnson, who trusted my judg-
ment to start a series in neural networks back in the late 1980s; Ms. Carol
Davidson for her invaluable advice every step of the way; and Ms. Roxanne
Guidice for her constant work on the production of the series. Also, I would like
to thank Ms. Sylvia C. Neuman for keeping my correspondence up to date, my
wife for her continuous encouragement, and my children for their understanding
of the fact that my work has as much importance as their computer games. Last
but not least I am grateful to all the authors for their valuable contributions to this
volume and the series. The third volume is also available now, and Volumes 4 to
10 will be available in the near future.

Omid M. Omidvar, Ph.D.

Series Editor

Computer Science Department

University of the District of Columbia
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Prospects for Classifying Complex
Imagery Using a Self-Organizing
Neural Network

Murali M. Menon

Karl G. Heinemann
Massachusetts Institute of Technology Lincoln Laboratory
Lexington, MA

1. INTRODUCTION

The Neocognitron of Fukushima [1] is a massively parallel multilevel neural
network system which performs visual pattern recognition. Its architecture mod-
els the anatomy of the human retina in a qualitative way. This system also
resembles the Adaptive Resonance model of Carpenter and Grossberg [2] in that
it is self organizing and operates without a “teacher.” The Neocognitron has a
demonstrated capability to discriminate alphabetical characters stored in a matrix
of 16 X 16 pixels. Performance on handwritten characters in a 19 X 19 matrix
was demonstrated by Fukushima [3]. A more recent study by Stoner and Schilke
[4] has confirmed the model’s ability to classify dot-matrix characters. While
many accurate character recognition algorithms already exist, the Neocognitron
is noteworthy because it handles positional shifts and moderate deformations in
the shapes of input characters. These properties suggest that Fukushima’s model
might be very useful in solving more demanding machine vision problems. Work
at the Massachusetts Institute of Technology Lincoln Laboratory has produced a
simulation of the Neocognitron on a serial machine. This program has operated
successfully on wire-frame images embedded in a matrix of 128 X 128 pixels.
The model was able to classify images by extracting features from the input
images and retaining only those whose response was above the average. Results
from different Neocognitron systems showed that its shift tolerance depends on
the number of levels used. A four-level system was unable to classify patterns
uniquely and tolerate shifts with an input plane of 128 X 128 pixels. However, a
single-level version was found that did classify properly and provide shift invari-
ance at the same time. The shift-tolerance property can be exploited to cope with
other kinds of variation by submitting appropriate transforms of the imagery as
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2 MENON AND HEINEMANN

input. This approach has been investigated by applying a polar transform to
achieve automatic recognition of rotated images.

2. MODEL DESCRIPTION

The Neocognitron is a structured network of analog processing units which
receive and transmit zero or positive valued analog signals. This network con-
tains four distinct kinds of computational elements called S-cells, C-cells, V-
cells, and V -cells. Each class of processor is defined by the types of cells which
provide its input and a specific mathematical operation which determines the
strength of its output.

The output from an individual processor generates input signals for certain
other nodes after passing through a set of weighted connections. Each of these
communication channels multiplies the transmitting unit’s output by a specific
connection strength (weight) and presents that product as an input for the receiv-
ing unit. The weight for a given connection can take on any positive value, so the
effect of a specific unit’s output may vary considerably from one node to the
next.

Cells in the Neocognitron generally receive inputs from a number of different
nodes and respond to the total received signal, but signals from the different
types of processors are summed separately, because they affect the response in
different ways. For a given unit, different patterns of output at the source nodes
will produce varying levels of total input. This behavior arises, because the
specific pattern of connection weights will amplify some of the individual source
signals more than others. The total input will be particularly high when the
source nodes send strong signals along paths with large weights, and it will
decrease as strong signals are shifted to paths with smaller weights or the paths
with large weights carry smaller signals. Thus, communication through the
weighted connections enables the processors to detect differences in the pattern
of transmitted signals. An analog transfer function then produces corresponding
variations in the response level.

The Neocognitron’s processing elements are organized into a hierarchical
series of levels, where units of each type appear at every level. All these levels
share a common structure wherein the different types of cells are segregated into
distinct layers, and signals traverse these layers in the same order. A schematic
representation of this architecture is shown in Figure 1.1, where an image comes
in at the left and data flow to the right. A layer of V-cells and a layer of V -cells
also exists at each level, but these have been omitted in order to simplify the
diagram. Output from any given level serves as input for the next one, until a
layer representing the final classification categories is reached.

The system is strictly a feed-forward network where signals originate at an
initial input layer and propagate towards the final output layer. A hierarchical
structure is produced by connecting the cells in a “fan-out” pattern, so that the
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LEVELS AND LAYERS IN THE NEOCOGNITRON

LAYER OF LAYER OF
S-CELLS C-CELLS
INPUT IMAGE Vo OUTPUT LEVEL
(Bottom) ¥ (Top)
[ = ] l ( 3 B )
a L“W““J
LEVEL 1 LEVEL N

Figure 1.1. Multilevel feed-forward architecture of the Neocognitron.

number of units gradually decreases as signals propagate into deeper levels of the
system. Under this connection scheme, each unit receives input signals from
specific small regions on the layers which immediately precede it. However, the
number of indirect connections between a processor and more distant prede-
cessors grows significantly as the number of intervening layers increases. For
any particular cell, the complete set of input sources on an earlier layer will be
referred to as the cell’s “receptive field” on that layer. Since processors at deeper
levels gain access to progressively larger portions of the input patterns, they can
respond to progressively more complicated features, and simpler features will be
detected over a progressively larger receptive field. The final output layer con-
sists of cells whose receptive field covers the entire input layer. This hierarchical
structure contributes to the Neocognitron’s capacity for shift invariant pattern
recognition.

In order to completely explain the property of shift invariance, one must
consider the structure of an individual level. The S-cells and the C-cells on any
given level are organized into a number of subgroups which will be called
“S-planes” or “C-planes” according to the type of processor which is involved.
V,-cells and V -cells also are grouped into planes, but there is only one V -plane
and one V_-plane on any level. These cell planes are treated as two-dimensional
matrices where the location of an individual element is specified by a pair of
column and row coordinates.

The relationships between planes, layers, and individual cells are illustrated in
Figure 1.2. All the elements in a given plane share a single pattern of connection
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LAYERS AND PLANES

C-LAYER
S-PLANE 1 C-PLANE 1
INDIVIDUAL _| |__INDIVIDUAL
S-CELLS C-CELLS
S-PLANE N C-PLANE N

94743.3

Figure 1.2. Detailed organization of the Neocognitron.

weights on their input channels. Consequently, a specific pattern of transmitted
signals will elicit the same response from any element which observes that
pattern exactly. While the input field of an individual processor covers only a
small portion of the source layer, the fields of adjacent cells can be positioned in
a way which insures that the entire source layer is covered. If the number of cells
in the plane, the size of their input fields, and the offset between these fields are
correctly matched, one can guarantee that some cell will show the optimum
response when a specific pattern appears anywhere in the source layer. Hence,
the behavior of these cell planes provides a massively parallel technique for shift
invariant feature detection. This architectural feature is the fundamental mecha-
nism responsible for the Neocognitron’s tolerance of positional shifts.

The Neocognitron acquires its ability to classify patterns because each level
contains a number of separate S-planes and C-planes. These two structures must
always be paired with one another, so a given level has the same number of each
type. However, the number of paired cell planes can vary from one level to the
next. Each of the S-planes has a distinct pattern of input connection weights, but
the C-planes on any particular level share one pattern in common.

The weights which feed into the S-planes have a special role, because they
change as the system learns. All the other connection weights are built into the
design of a specific Neocognitron architecture, and they cannot be modified. As
the system learns to discriminate between diverse input images, the S-planes
become sensitive to different spatial arrangements of the source signals. How-
ever, units in any given plane will receive small input signals from almost any
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pattern that happens to occur. Difficulties could arise if all these signals were
allowed to propagate deeper into the system. Some of the very weak signals
could be greatly amplified when they pass through connections with large
weights, and the results might convey some very misleading information.

In order to avoid this problem, the Neocognitron incorporates mechanisms
which suppress the transmission of insignificant input signals. Interactions be-
tween the different types of processors work in concert with their particular
response functions to provide a form of adaptive filtering. This design prevents
the S-cells and C-cells from responding unless the pattern dependent input signal
exceeds an independent estimate of the “typical” incoming signal strength.

A brief discussion of the different processors’ actual operating characteristics
and their interconnections will help to illustrate and clarify these general princi-
ples.

2.1. Cells in the S-layer and the V -layer

The S-cells in a given level obtain information about the previous one through
two separate input mechanisms. Units in the first S-layer respond to the initial
input signals, while those on subsequent levels receive input from C-planes on
the preceding level. Direct connections from C-cells to S-cells carry excitatory
signals which act to increase the S-cell’s output. The S-cells also receive an
inhibitory input which reduces the output signal through a shunting effect. This
inhibitory signal ultimately comes from the same C-cells which produce the
excitatory ones, but a layer of V -cells intervenes to perform some additional
processing.

Any given level contains a number of S-planes and a single V -plane which all
share the same geometric structure. The units at a given position in any of these
planes share the same input fields, which extend over a specific set of adjacent
coordinates in the preceding C-planes. Figure 1.3 illustrates the configuration of
direct connections going from a C-layer to a particular S-plane. As a result of this
connection scheme, S-cells and V -cells receive input from small regions on all
of the C-planes. This arrangement enables the S-cells to recognize groupings of
features that might have been detected in earlier stages of processing. If k refers
to the kth S-plane in level / and n refers to a specific position in that S-plane, the
response of the corresponding S-cell is given by:

Us(k,, n) = r, X flA) 2.1

Lt B, S aitk g, vk X Ucpoy (g, n + v)

(2.2

A= [ : —1]
1+ 7 +’r X b,(k;) X Ve (n)

!
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RECEPTIVE FIELDS OF S-CELLS AND C-CELLS

ADJUSTABLE FIXED
1GHT! WEIGHTS
C-LAYER WEJGV : S-LAYER i C-LAYER

RECEPTIVE
AREAS

LEVEL 1 LEVEL § +1

Figure 1.3. Interconnection architecture of the Neocognitron.

Expression Uc,_,(k,_,, n + v) represents an excitatory signal coming from
the unit at position n + v on C-plane k, |, and Vc,(n) represents the inhibitory
input. In Equation 2.2, a,(k,_,, v, k;) are the connection weights for excitatory
input, and v designates a relative position inside the region of input. Positional
variations of the weight values give rise to the “weight patterns” which were
discussed earlier. These weight distributions differ from one source plane (k,_,)
to the next, so that the S-cells can recognize combinations of different source
patterns. Note that a/(k,_, v, k;) does not depend on the S-cell position, =,
because all members of a given plane k, have the same distribution of input
weights. In the Equation 2.2, the inner sum computes the total excitatory input
from a specific C-plane, and the outer sum adds together the contributions from
different planes.

The inhibitory effect works through this expression’s denominator, where the
connection weight b,(k;) multiplies the output from a single node on the V_ plane.
This inhibitory signal comes from the V. cell at location n, which corresponds to
the S-cell’s position in its own plane. The V -cell at those coordinates receives
input from the same C-cells which are exciting the S-cell, and it responds by
computing a weighted root-mean-square:

E 2 c,(v)y X Uc? ,(kj_,,n+v) (2.3)

K
kl =1 VESI

Ve(n)=
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where ¢/(v) represents the input connection strength for a particular position v in
that cell’s input field. These weights can follow any distribution which decreases
monotonically as the magnitude of v increases, and they must be normalized so
that their sum is exactly equal to unity, that is:

Z > ) = 1. 2.4)

k_, =1 ves,
In the present study, the ¢,(v) were defined by a decaying exponential distribu-
tion:

C,(V) C(l) 01.7(‘) (25)

where r'(v) is the normalized distance between location v and the center of the
input region (0 = r’ = 1). The parameter q, is a small constant (a; < 1) which
determines how quickly these weights fall off as r'(v) increases. Consequently,
weights at the edge of S,(r' = 1) are equal to a fraction of a, of the value at the
center (' = 0). The expression C(J) is a normalizing constant:

cuy = Z 2 ay® 2.6)

'l —l vES’

which insures that Equation 2.4 will be satisfied. All the V -cells in a given plane
(and level) use the same pattern of input connections, but «, is free to assume a
different value for each level.

The weighted root-mean-square signal from a V -cell propagates to all S-cells
at the same coordinates n. However, the weights on these connections, b,(k,), are
all independent, so the actual inhibitory effect will differ from one S-plane to the
next. In addition, the denominator of the S-cell response function contains a
factor r,/1 + r;, which further modulates the inhibition. This factor can provide
any degree of attenuation as the parameter r;, goes from O to oo, and it has great
sensitivity at the low end of its dynamic range. Note that r, also appears as a
multiplicative factor in the S-cell response function. It is given this additional
role to curb growth in the final output when high attenuation (low r;) makes the
inhibition ineffective. The values for r, are set by the system designer, and the
subscript indicates that these values can be different at each level. Hence,
the action of these parameters enables the system designer to control the overall
influence of the weighted root-mean-square input at each level of the system. In
order to prevent division by zero when inhibitory input is totally absent, the
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attenuated signal is incremented by one. This solution conveniently neutralizes
the denominator when there is no inhibitory input.

As discussed previously, an S-cell’s excitatory input measures the degree of
similarity between a particular arrangement of source signals and a feature repre-
sented by the distribution of input weights a,. The quotient in Equation 2.2
compares the actual excitatory input with some fraction of the weighted root-
mean-square source signal. The resulting ratio is decreased by one to determine
which of the two input signals is greater. A positive difference indicates that the
excitatory signal is greater, because the previous ratio exceeded unity, and a
negative difference indicates that the inhibitory signal was greater. The function
“f” which operates on this result is the linear threshold function:

x(x = 0)

0(x < 0). @7

fx) = {

Consequently, an S-cell responds only if the excitatory input exceeds the inhibi-
tory input, and the transmitted signal is proportional to the relative difference.
The double sum in the numerator is incremented by one to produce proper
behavior (zero response) when excitatory input is absent.

The Neocognitron learns to discriminate between different patterns of input by
updating the adjustable weights a,(k,_,, v, k;) and b,(k;) in Equation 2.2. Weights
for the excitatory connections (a,) start off with small values that allow different
S-planes to produce distinct responses to an arbitrary input pattern. The inhibi-
tory weights (b,) are set to zero initially. Increments for both types of weight are
determined by finding those S-cells which show the greatest response with re-
spect to a certain set of the others. These units are selected by imagining that all
S-planes on a given level are stacked vertically.

Many overlapping columns are defined in this stack, where a column goes
through the same set of spatial positions in each S-plane. The learning procedure
examines each column and records the position and plane where the S-cell
response is strongest. This analysis is carried out for all possible columns, so that
the entire S-layer is considered. If two or more maxima occur in one S-plane, the
strongest one of those is retained and the others are discarded. Hence, this
selection procedure locates the strongest response in each S-plane, but the maxi-
mum for a given plane can be rejected if it is overshadowed by the output from a
nearby cell in some other plane. If this procedure selects a representative for
S-plane k, at position 7, then the input weights for that plane are reinforced
according to the rules:

Bayk, 1), v, k) = g, X ¢,m (v) X Uc,_y(k,_y, i + v) (2.8)

Abyk) = g, X Ve, (A). (2.9)
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None of the weights are reinforced if all the columns produce the same
response. The parameter g, is a gain factor that controls the rate of learning at
each level, and it usually becomes larger as one progresses to higher levels.
Since the increment for a given excitatory weight is proportional to input from
the C-cell, only those connections carrying strong input signals are substantially
reinforced. Consequently, the most significant modifications occur for connec-
tions where the input and the output are both relatively strong. This behavior is
similar to Hebbian learning without a decay term. Note that the Neocognitron
could be operated in a supervised learning (“with a teacher””) mode by specifying
the plane lAc,, and location 7 to be used at each level for a given input image.
Further refinements are possible by including decay terms in the learning rule,
but only Equations (2.8) and (2.9) were implemented in the present work.

2.2. Cells in the C-layer and the V -layer

The interactions and operational characteristics of the C-cells and the V -cells
function in a manner that is very similar to the subsystem of S-cells and V -cells.
These processors also take a given collection of source features and perform a
comparison of two metrics. The result again determines whether information
about that feature set will be passed on to higher-level classifiers. Units in the
C-layers and the V -layer have input fields on the preceding S-planes. The exact
locations covered by a specific field are related to the position of the receiving
unit, just as before. However, elements in a given C-plane receive excitatory
inputs from only one particular S-plane, and each S-plane communicates with
only one C-plane. This design principle is depicted in Figure 1.3, and it is
responsible for the pairing of cell planes that was mentioned above. V-cells
receive input from all the preceding S-planes and generate an inhibitory signal.
The C-cells compare these excitatory and inhibitory inputs by applying the same
shunting mechanism which an S-cell uses:

(2.10)

1+ 2ep, di(v) X Usyky, n+v) i ]

etk n) = g [ I+ Vs
2

where D, is the region of input on the S-layer, Us is the S-cell output from
position n + v on S-plane k;, and d, is the input connection weight at relative
position v in the region of input. This expression is quite similar to the S-cell
response function given in Equations (2.1) and (2.2), but the excitatory compo-
nent in the numerator includes contributions from only one S-plane, and the
connection weights for inhibitory input are set to unity. The excitatory connec-
tion weights d; have fixed values that are determined according to the same
general principles used for the weights c¢,(v) in Equation 2.3. In practice, setting
the d, to be uniform across the receptive field has proven to be adequate.



