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Introduction. ¢

These notes contain an introduction to the theory of linear

algebraic groups over an aigebraically closéd ground field.

‘They lead in a straightforward manner to the basic results

about reductive groups.

The main difference with the existiﬁg introduﬁtory texts.on_
this subject (e.g. those of Borel and HuﬁphreYs)iiies in the
treatment of the prerequisitesAerm algebraic geomefry gnd
cémmutative algebra. These texts assume a number of such
prerequisites, whereas I have tried to give prbpfé;of’évery—
thing. ‘I have also tried to limit as much as poésible the

commutative algebra. For example, the use of the concept

of normality has been avoided. o ®

Moreover, .in the later chapters.most'gf thé facts about rod%
systems which are needed are proved, in an ad hoc manner.
Exception must be made for the results on‘classifiCation

of root systems which are used in the last two chapters.

The exercises contain additional material. Sometimes use is
made later onof the results contained in the easier exercises.
Except for a brief discussion in chapter 3 of groups over
finite fields, these notes do not contain material about
algebraic. groups over non algebraicall& closed ground fields.
An adequate treatment of such méterial wouid probably »
require ancther volume of the same size.

The notes had their origin in a course on linear algebraic
groups, given at the University of Notre Dame in the fall of

1978. This courze .overed most of the material contained in



the first ten chapters. I have added two chapters, with a
treatmeht of the uniqueness and existence theorems for redqu
tive groups. |

I am gfateful to my colleagues at the Univgrsity ;f Notre
Dame, in particular O.T. OFMeara and W.J. Wong, for their
invitation to give a course on algebraic groups. I am also
grateful to Hassan Azad, for making a first draft of the
notes .and to F.D. Veldkamp, for a thcrough critical feading
of the mépuséript. Finally I want té thank Renske Kuipers

for the efficient preparation of the manuscript.

Utrecht, October 1980. T.A. Springer.
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1. Some algebraic geometry.

1.1. The Zariski topology.

1.1.1. Let k be an algebraically closed field; and put V = Kk
The elements of the polynomial algebra 3 = k[Tl”"’Tn]
(abbreviated to k[T]) can be viewed as k-valued functions on
V. We say that v € V is a zero of f € k[T] if f(v) = 0. More-
over, v-.is a zero of the ideal I of S if f(v) = 0 for all

f € I. We denote by V(I) the set of zeros of the ideal I. If
X is any subset of V, let I(X) € S be the ideal formed by the
f € S vanishing on X.

Recall that the radical VI of the ideal I is the ideal of
“all f € S such that f" € I for some integer n # 1. A radical
iﬂéél is one equal to its radical. It is obvious that all I(X)
are radical ideals. ‘

We shall need Hilbert's Nullstellensatz, in two (equivalent)

formulations.

1.1.2.. Theorem ("Nullstellenéatz") (i) If T is a proper ideal
of S then V(I) * ¢

(ii) For any ideal I of S we have I(V(I)) = /T.

For a proof see, for example {26, Ch. X, §2]. We also give a

proof in the appendix to this chapter.

1.1.3. Zariski topology on V.

The function I » V(I) on ideale of S has the following proper-
ties:
(a) v({oD) = v, V(S) = ¢;

(b) If I € J then V(J) € V(i);



(c) V(I n J) = V(I) U V(J);

(d) If (Ia)aeA is a family of ideals and I = aéA I, their sum

then V(I) = n V(Ia)
a€A :
The procof of these propertles is left to the reader (hint for

(¢): use that IJ c I n J).
[t follows from (a), (c) and (d) that there is a topology on
/ whose. closed sets are the V(I), T runniﬁg through the #eals

of S. This is the Zariski topology. The induced topology on a

subset X of V is the Zariski-topclogy of X. A closed set im V

is called an-algebraic set.

i.1.4. Exercises. (1) Let V = k. The proper algebraic sets are
the finite ones. ‘ _

\2) Let X be any subset of V. Its:Zariski closure is V(T(X)).
{3) The map I defines an order-reversing bijection éf the-.
family of Zariski-closed subset of V onto ;he faﬁily of.rédical
ideals of S; ifs ihverse'is V. .

(4) The Euclidean topology on ¢" is finer than the Zariski

mopology.

1.1.5. Progosition Let X =¥ be an algebralg set

(i) The ZaPlSkl togologz of X-1is T 1 e. p01nts are closed

13
(ii) Z famlly of closed suDsets of X contalns a mlnlmal one,

-(iii) If X,2X;2... is a deacendlng squence of C¢osed subsets

12 o
of X there is 'h such that X, = X, for i > h;

B

(iv)' Any open covering of X has-a finite subcovering.

If x = (x4,...,% ) € X then x is the zero of the ideal of S -
generated by T -xy,...,T -x_ . This implies (i).

(ii) and (iii) follow from the fact that S is a-noétheriaﬁ;ring



[26, Ch. VI, §1], using 1.1.4(3).

‘To establish (iii) we formulate it in terms of closed sets. '

~We then have to show: if (I ) cx is a family of ideals such’
that N V(Iu) ¢, then already a finitevihteréecfion of
. Q€A

.some V(I ) is empty. Now u51ng properties (a) (d) of 1 1 3

and 1.1.4(3) we have X I, = S. Hence there are: flnltely’t
é . 0€A

many of the I ; éay 11,12, ..,Ih such that 11 A.l'

‘Then n V(I Y=
1x1" R IR

Aitopological space X with the property (ii)is callédnoether--.

“ian. Notice that (ii) and (iii) are equlvalent oropertxes

(compare the correspond1ny propertles 1n

"etherlan rzngs, cf.

1265 B 1u2J) X 1sgua31 compact if rthas the property of (1v)

i P s Exercxse. A closed subset of a noetherlan space (wlth

the 1nduced topology) is noetherlan.A_r

1.2. Irreducibility of topologioal.spaces.:‘

A2 % A topolog1ca1 space X is PeGUClble if it is the unlon

of two proper closed subsets.- 0therw1se X is 1rreduc1b1e

A subset X is irreducible if 1t ie irreducible for the

;1nduced topology ,
"Notlce ‘the follow1ng fact X is irregucible if and oniy.if
; ary two non-empty opén subsets of X have a non- empty 1nter--

= sectlon.

1.2.2.?Exercise.”An irreducible Hausdorff space;is'reQuced.tof

& ‘point. . . g ey SR RN I A S R

1.2.3. Lemma. Let X be g’topoiogical space.




(i) A c X is irreducible if and only if its closure A is
irreducibley

(ii) Let f: X = Y be a continuous map. If X is irreducible
then so is fX.

Let A be irreducible. If A is the union of two closed subsets

A1 and AZ’ then A is the union of the closed subsets A N A1

and A N A,, whence (say) AN A, = A, and A © A, Ac A

1

Hence A = Ay. So A is irreducible.
Conversely, if A is irreducible, and if A is the union of

two closed subsets A N B AN 52’ where B B2 are closed in

12 1.2
X, then A c B, U B,. So An B, = A (say), whence A N B, = A.

The irreducibility of A follows.

The proof of (ii) is edsy and can be omitted.

1.2.4. Proposition. Let X be a noetherian topélqgical space.

(i) X is a union of finitely many irreducible closed subsets,

say X = X1 U oo AU XS;

(ii) If there are no inclusions among the Xi, they are

uniguely determined, up to order.

Recall that a noetherian space is ‘one, with the property of
1.1.5(ii). If (i) is false, the noetherian property épd Jaiab
show that there is a minimal closed subset A of X which is
not a finite union of irreduci§le closed subsets. Then A must
be reducible, so A is a union of two proper closed subsets.
But these do have the property in question, and a contra-
diction emerges. This establishes (i).

To prove (ii), assume there are no inclusions amcong the Xi’
and let X = Y, U ... U Y, be a second decomposition with the

1

same propertiés. Then,Xi =\ (Xi N Y.), and by the irreduci-
1 JI



bility there is a function f: {1;..5.8F > {1.:;.,EF with

X; € Yf(i)' Similarly, there is g: {1,,:.5F} =-{1,....s8} with

i el % | i

feg = id. This implies (ii).

Since Xi c xg(f(i))’ we have gef = id, also

The Xi are called the>(irreducib1e) components of X.

We now return to the Zariski topology on V = k™.

1.2.5. Proposition. A closed subset X of V is irreducible if

and only if 1(X) is a prime ideal. _ A

Let X bé irreducible and let f,g € S be §uch that fg € 1(X).
Then X =" (X N V(£fS)) U (X n V(gS)) and the .irreducibility of
X implies that X « V(fS),say, i.e. f € J(X). So J(X) is pnéme.
Conversely, let I(X) be prime, and let X = V(Il) U V(Iz) =
V(I, n I,). If X = V(I,), there is f € I, with f ¢ 1(X).
Sinée fg € 1(X) for all g € Iy, it follows from the fact that
_I(X) is prime that 12 c T(X), whence X = V(Iz). So- X'is

irreducible.

1.2.6. Exercise. (1) Let X be a noetherian space. The compo-
nents of X are the maximal irreducible closed subsets of X.
(2) Any radical ideal'I of S is an intersection

I =P, N ...0 Ps ofvfinféély many prime ideals. If there are
no inclusions among the Pi they are uniquely determined, up

to order.

1.3. Affine k-algebras.

1.3.1. We now turn to more intrinsic descriptions of algebraic

sets. Let X €V ke one. The restrictions to X of the polynomial



'~fﬁnctioﬁs of Sfbrm a k-algebra, denoted by k[X], which clear-
”’ly g 1somorphle to S/1(X). The following’propertiés of k[X]

-are. obV1ous f

'?{a) k[X] is a commutatlve k-algebra of finite t _XR; i.e. there
s & f1n1te subset {xl,...,xr} of k[X] such that k[X] = :
:k[x ,...,x ],;v :
(b). k[x] 13 reduced, i.e. 0 is the cnly nllpotent element of
k[X?. A k-algebra A with the propertles of (a) and (b) is

called an afflne k-algebra. IEA 1s an afflne k-algebra -

‘there is anAr and an algebraic sibset X of k such rhat
e : i

A ﬂikfX]Q?Fdr”Anﬁ k[Ti’...,T ]/I-'whére I fé:fhe'kéfhel of

the homomofphiém k[T et T 1+ A sendlng T to’ xi, thls is

a radical Taeal. We caly’ k[x] the affine j gebra £ X.

2 312 We next _show that the set X together with‘le’Zariski
topology is determlned by its affine algebra k[X].:Flrst
observe that (by 1.2.5) X is irreducible if and only if x[X]
is Fn integral domain. If I is an !deal in k[X] let VX(I) be
the set of the x € X such that' f(x) = 0 for A1l FETAAEY

S th e OF ; 1et”t'(Y)-be the ideal of the f € k[X] such °
“thét £(x) = 0 for all x € Y. ;
"A belng an affine algebra let Max (A) be the set of its max1~
mal ideals. If X 1s as before, and x°€ X, ‘denote’ by M the
ideal of all f € k[X] vanishing in x. Then M is a maximal

ideal (since K[X]/M_ is the field k).

1.3.3. ?rogositioh. (i) The map x » M defines a bijection of
X onto Max(k[X1), 'moreover x € Vy(I) if and only if I & ng'

(ii) The closed sets of X are the V,(I), I running through the



ideals of k[X]. :

Since k[X] = S/1(X), the maximal ideals of k[X] correspgﬁd to
the maximal ideals of S containing I(X). Let M be a mé;ima1- 
ideal of S. Then 1.1.4(3) and 1.1.5(ii) imply that‘Mols;tﬁez
set of all f € .8 vanishing in some x € ks Fpoh thisAfhé first
point of (1) follows, and the second point is obvxous.n«

(ii) 4is a direct consequence of the def1n1t1on of the Zarxskl

topology of X.

1.3.4. Exercises. (1) For any ideal T of k[X] Qelhavér
‘IX(VX‘I)) = /I; for any‘§hbset Y of X we have VX(IX(X))'= Y.
(2) The map I* defines an:order%revéfsiﬁg bljectionlof;fhe
family of Zariski-closed subsets of X onto the family of
radlcal ideals of k[X], its inverse is UX

(3) Let- A be an afflne k-algebra. Define a bljectlon of Max(A)

onto the set of k-algebra homomorphlsms AL+ K.

From 1. 3 3 we see that the algebra k[X] completely determlnes

X and its Zariski topology.

1.3.5.>We also have to consider locally defined functions .on

X. For this we need special open subsets of X, which we now-

define.

If f € k[X], put { s raio DA e SO ERAE SRR
D) = {x € X|[£(x) #0}. -

Clearly, this is an open subsét, viz. the complement. of -

\

Vy(fk[X]). It is also clear that ...,

S REERT <oplf) NoD(gY s BES 2%(E). N e O e e



We call the D(f) principal open subsets of X.

1.3.6. Lemma. (i) If f,g € k[X] and D(f) = D(g) then

£" € gklX] for some n > 1;

(ii) The D(f) form a basis of the topology of X.

Using 1.1.4(3) we see that D(f) <« D(g) if and only if
VEKI[X] < /gkl[X], which implies (i).

To prove (ii) one has to show that any closed set is an M-

tersection of sets of the form Vx(fk[X]), which is obvious

from the definitions.

1.4. Regular functions, ringed spaces.

1.4.1. The notations are as before. Let x € X. A k-valued
function defined in a neighbourhood U of x is called regular
in x if:there are g.h € k[X] such that h(x) # 0 and such that
therevis an open-neighbourhood V ¢ U of x with h(y) # 0 and
fly).= g(y)h(y).1 for all y € V.

A function f definea in a non-empty open subset U of X is
regular if it is regular in all points of U (so for each

x € X there exist gx,hx with the properties stated above,
they may depend on x). We denote'by OX(U) or 0(U) the k-alge-
bra of regular functions in U.

The following properties are obvious:

(A) If V is a non-empty open subset of the open set U, the :

restriction map of functions defines a k—algebra homomorphism
0CU) + 0(V); !

(B) Let U = UU be an open covering of the open set U.
il a€n & — = Open. COVEDINE of TRE Open-Set
Suppose that for each a € A we are givep fa € 0(Uq) such that




fa and fB restrict to the same function on Ua nvu

8 (o, BE _AY,

Then there is f € 0(U) whose restriction to Ua is fa’ for

all o € A.

1.4.2. Sheaves of functions.

Let X be a topological space, and suppose for each non-empty
open subset U of X'a k-algebra 0(U) is given such that (A)

and- (B) hold. Then 0-is a sheaf of k-valued func¢tions on'X

(we shall not need the general notion of a sheaf on a topolo-
gical space). A pair (X,0) of a topological spaée and a sheaf -
of functions is called a ringed- space.

Let (X,0) be a ringed space; let Y be a’'subset of X. We define
the induced ringed space (Y,0|Y) as follows. Y is provided
with the induced:-topology. If U is an open subset of Y, then
(0]¥)(U) consists of the functions f on U with the following
property: there exists an open covering U ; U Ua by open sets
of X and for each a € A an element f € O(Uaﬁeehose restric-
tion to Ua N U coincides with that of f.

Then 0|Y is a sheaf of functions on Y. The proof of this fact is left
to the reader. If Y is open in X, then (0|Y)(U)=0(U) for all open

U e-Y.

1.4.3. Affine algebraic varieties.

The ringed spaces (X,Ox)vof 1.4.1. are the affine algebraié

varieties over k. In the sequel we shall usually drop. the OX’
and speak of an algebraic variety X,... . In this case, denote

by 0x the k-algebra of functions regular #n x € X. By defi-

X
b
nition these are functions defined and regular in some open
neighbourhood of x, two such functions being identified if

they coincide in some neighbourhood of x (a formal definition



