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Preface

In 1961, C. Zener, then Director of Science at Westinghouse Corpora-
tion, and a member of the U.S. National Academy of Sciences who has made
important contributions to physics and engineering, published a short article
in the Proceedings of the National Academy of Sciences entitled ‘A Mathe-
matical Aid in Optimizing Engineering Design.” In this article Zener
considered the problem of finding an optimal engineering design that can
often be expressed as the problem of minimizing a numerical cost function,
termed a ‘‘generalized polynomial,” consisting of a sum of terms, where
each term is a product of a positive constant and the design variables, raised
to arbitrary powers. He observed that if the number of terms exceeds the
number of variables by one, the optimal values of the design variables can be
easily found by solving a set of linear equations. Furthermore, certain
invariances of the relative contribution of each term to the total cost can be
deduced.

The mathematical intricacies in Zener’s method soon raised the
curiosity of R. J. Duffin, the distinguished mathematician from Carnegie-
Mellon University who joined forces with Zener in laying the rigorous
mathematical foundations of optimizing generalized polynomials. Interes-
tingly, the investigation of optimality conditions and properties of the
optimal solutions in such problems were carried out by Duffin and Zener
with the aid of inequalities, rather than the more common approach of the
Kuhn-Tucker theory. One of the inequalities that they found useful in
studying the optimality properties of generalized polynomials is the classical
inequality between the arithmetic and geometric means. Because of this
inequality, and some more general ones, called ‘‘geometric inequalities,”
Duffin coined the term ‘geometric programming” for the problem of
optimizing generalized polynomials. In 1963, E. L. Peterson, a student of
Duffin, started to work on developing the theory of constrained geometric
programming problems. Thus a new branch of optimization was born.

The significance of the theory developed by Duffin, Peterson, and
Zener was recognized very early by D. J. Wilde, then Professor of Chemical
Engineering at Stanford University, who was equally interested in optimiz-
ing engineering design and in the theoretical aspects of optimization. He was
fascinated by the simplicity and the potential usefulness of geometric

vil



viii Preface

programming and urged his two doctoral students M. Avriel and U. Passy to
devote parts of their dissertations to geometric programming. These were
completed in 1966 and contained topics that served as a kernel from which
many future developments have sprouted. In the book Geometric Pro-
gramming, published in 1967, Duffin, Peterson, and Zener collected their
pioneering work. Their book was instrumental in inspiring continued
research on theory, computational aspects, and applications.

Since the mid-60’s, geometric programming has gradually developed
into an important branch of nonlinear optimization. The developments
include first of all significant extensions of the type of problems that were
considered 10 years ago as geometric programs. Also, two-sided relation-
ships with convex, generalized convex, and nonconvex programming,
separable programming, conjugate functions, and Lagrangian duality were
established. Numerical solution methods and their convergence properties
were studied. Subsequently, computer software that can handle large con-
strained problems were developed. Applications of geometric programming
to more and more problems of engineering optimization and design and
problems from many other diverse areas were demonstrated.

In recognition of the important role of geometric programming in
optimization, the Journal of Optimization Theory and Applications devoted
two special issues to this subject. The majority of works appearing in this
volume were first published there. In order to make this book as self-
contained as possible, three earlier works on geometric programming are
also reprinted here. These include (i) the 1968 paper of M. Hamala relating
geometric programming duality to conjugate duality, which was originally
published as a research report; (ii) the comprehensive survey paper of E. L.
Peterson that appeared in 1976 in SIAM Review, and on which his other
articles in this book are based; and (iii) the 1975 paper of M. Avriel, R.
Dembo, and U. Passy that appeared in the International Journal of Numeri-
cal Methods in Engineering, describing the GGP algorithm that serves as a
prototype of several condensation and linearization-based methods. The
permission granted to reprint these works is gratefully acknowledged. (For a
more detailed description of the articles in this volume, see the Intro-
duction.)

I wish to express my appreciation to Professor Angelo Miele, Editor-in-
Chief of the Journal of Optimization Theory and Applications, and Series
Editor of the Mathematical Concepts and Methods in Science and Engineer-
ing texts and monographs, for inviting me to edit the two special issues of
JOTA and also this book. Thanks are also due to Mrs. Batya Maayan for
assisting me in these projects.

Haifa Mordecai Avriel
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Introduction

M. AVRIEL

Geometric programming is probably still considered by many applied.
mathematicians and operations researchers as a technique for optimizing
‘posynomials (generalized polynomials). The objective of this book is to
bring to the attention of interested readers some of the advances made
in recent years in geometric programming and related fields which reflect
the greatly widened scope of this branch of nonlinear optimization.
The advances are in three major categories: analysis, computations, and
applications. The papers appearing in the book can be also classified
accordingly.

The first two papers are introductory and set the stage for the analysis
part of the book. The paper by Hamala presents the reader with the basic
notions of convex functions, convex programming, and conjugate duality.
Next, it introduces a class of primal-dual program pairs whose optimality
properties are derived, and it is shown that primal-dual geometric programs
are a special case of this class. Whereas the original development of duality
in geometric programming was obtained with the aid of inequalities, Hamala
derives analogous results by conjugate duality.

The second introductory paper is an extensive survey by Peterson in
which he defines a quite general class of problems termed generalized
geometric programs. For such programs he derives a comprehensive theory
of optimality and duality, related to the convex analysis of Fenchel and
Rockafellar.

An important result is that several well-known classes of optimization
problems, possessing certain separability properties, can be reformulated as
generalized geometric programs. These are amenable then to a unified
treatment by optimality analysis. The next four papers, all written by
Peterson, elaborate on the topics introduced in his survey and provide
proofs of the results.

The theory of generalized geometric programming is carried further to
nfinite dimensional spaces in the paper by Jefferson and Scott. They
consider convex optimal control problems, derive the appropriate dual
problem, and discuss the optimality properties of the primal-dual pair.

1



2 Introduction

In the next paper, Abrams and Wu investigate primal-dual pairs of
generalized geometric programs in which one program, say the dual, does
not have feasible interior points. In this case the primal problem has an
unattained infimum or an unbounded optimal solution set. It is shown that
after finitely many restrictions of the dual problem to an affine set and
projections of the primal problem onto a subspace, a pair of problems results
that has feasible interior points, bounded optimal solution sets, and the same
value of the infima as the original pair of programs.

Lidor and Wilde study in the next paper extensions of ordinary (proto-
type) geometric programs in which some of the primal variables may appear
also as exponents or in logarithms. These are called transcendental pro-
grams and they resemble in many ways ordinary geometric programs,
although, due to lack of convexity, they can have local minima that are
nonglobal. Corresponding dual programs are derived that are not “pure”
duals, in the sense that they contain also primal variables. Avriel and Passy
showed in their doctoral work the mathematical identity between the
so-called ‘“‘chemical equilibrium” problem of reacting species in an ideal
system and the dual program of an ordinary geometric program. Lidor and
Wilde demonstrate in this paper a relationship between dual transcendental
programs and the chemical equilibrium problem in nonideal systems. This
paper also concludes the analytic part of this book.

The numerical solution of geometric programs is a subject of great
interest, and many specialized algorithms have been developed for this
purpose. One of the basic questions concerns solving the primal or the dual
program. In case of ordinary geometric programs the dual has a concave
objective function and linear constraints, whereas in the primal program the
constraints are usually nonlinear. It seems, therefore, logical to solve
ordinary geometric programs via the dual. In practice, however, this
approach is not always advisable because, if some dual variables must vanish
in the optimal solution, the gradient of the objective function becomes
unbounded and causes considerable numerical difficulties. Also, since pro-
grams more general than ordinary geometric programs either do not have a
dual or the dual does not offer apparent computational advantages, several
primal-based algorithms have been derived. Most of these use conden-
sation, a technique for combining a sum of positive terms into a single term
that enables a nonconvex program to be approximated by a convex one.
Further condensation can result in the approximation of a convex program
by a linear program. A representative member of such a class of methods is
the GGP algorithm described in the paper by Avriel, Dembo, and Passy,
which opens the computational part of the book. The main purpose «
including this paper in the book is to make this volume more self-contain: -
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as this paper describes many details mentioned in the other computation-
ally oriented works in this book.

The next three papers mainly deal with comparisons of various
algorithms for the solution of geometric programming problems. The first
paper by Dembo surveys primal-based and dual-based methods for ordinary
(prototype) and generalized geometric programs. Special codes for
geometric programs are compared among themselves and also with general-
purpose algorithms by solving a set of test problems.

Sarma, Martens, Reklaitis, and Rijckaert continue the comparisons for
ordinary geometric programs by testing various primal-based and dual-
based algorithms. Their main conclusion is that dual-based methods do not
offer any significant computational advantages, except in special cases.

Rijckaert and Martens performed a more extensive comparison by
using 17 algorithms on 24 test problems. They also report that primal-based
methods are generally superior to dual-based ones and that methods using
condensation are the fastest and most robust.

The development of procedures for the practical evaluation and
comparison of numerical methods and computer software is one of the most
interesting problems of optimization awaiting a satisfactory solution. To
illustrate this point, in the paper of Rijckaert and Martens it is shown that
computer codes specially written for geometric programs clearly perform
better than a general-purpose code included in their study. On the other
hand, Ratner, Lasdon, and Jain, who developed an excellent and very
efficiently programmed computer code that implements the generalized
reduced gradient (GRG) method, report that their general-purpose
nonlinear programming code can perform just as well as the special-purpose
codes when applied to geometric programs. Another interesting observation
is that the hitherto generally accepted “‘standard time’’ defined by Colville is
an inadequate means of compensating for different computing environ-
ments. Clearly, much more research is needed in this area.

Although, judging from the above comparisons, the role of duality from
a computational standpoint may have been overemphasized, there are
several computational aspects of duality that deserve attention. Dembo’s
paper focuses on the interpretation of Lagrange multipliers that correspond
to the constraints of a dual geometric program. He also analyzes the
question of subsidiary problems that are needed when the exponents of the
primal variables are linearly dependent.

The next two papers offer conceptual algorithms with limited compu-
tational experience. In the first paper, Ecker, Gochet, and Smeers present a

-odified reduced gradient algorithm for solving the dual problem of
linary geometric programming. The difficulties encountered by other
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methods that attempt to solve dual geometric programs, such as the Beck
and Ecker convex simplex method, are taken into consideration in the
development of the new algorithm.

Methods discussed in the previous papers can in the best case find only
local minima of nonconvex generalized geometric programs. Such local
minima need not be global. Passy proposes here an implicit enumeration
method for finding global solutions of nonconvex generalized geometric
programs. His method can also be applied to a larger class of nonconvex
programs.

The next two papers by Mancini and Wilde explore and demonstrate
the possibilities of using interval arithmetic (an extension of ordinary
arithmetic in which the basic elements are closed intervals) in geometric
programming. The first paper applies interval arithmetic to geometric
programs in which either the number of terms appearing in the primal
problem exceeds the number of variables by two (one degree of difficulty) or
the primal problem is unidimensional. The solution is based on an interval-
arithmetic version of Newton’s method. The second paper applies interval
arithmetic to more general dual geometric programs in order to verify the
existence and uniqueness of solutions and to compute error bounds on them.

Next there are two papers in this book that deal with engineering design
applications of geometric programming. The usefulness of geometric pro-
gramming is again demonstrated in this type of application. First, Avriel and
Barrett consider a structural design problem of optimizing the geometry of
certain wood beams. Second, Ecker and Wiebking formulate and solve the
problem of optimally designing a cooling tower used in dissipating the waste
heat of steam electrical plants. An interesting aspect of both engineering
design papers is that existing theory and computational methods of
geometric programming require all constraints to be inequalities. If the
design problem has equality constraints, they must be expressed as inequal-
ities in the geometric programming formulation—often an unnecessarily
complicating feature. This is yet another unexplored area of geometric
programming.

The book is concluded with a classified bibliography of publications in
geometric programming, compiled by Rijckaert and Martens.
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Geometric Programming in Terms of Conjugate
Functions'

M. HAMALA?

Abstract. Our purpose is to show that the duality of geometric pro-
gramming is a special case of Rockafellar’s general theory of duality, and
to construct a class of dual programs, which can be considered as a
generalization of the usual geometric duality.

1. Introduction

The main purpose of this paper is (i) to show that the geometric duality
of Duffin, Peterson, and Zener (Ref. 1) is a special case of Rockafellar’s
general theory of duality (Ref. 2), and (ii) to construct a general class of dual
programs, which can be considered as a generalization of the geometric
duality (Ref. 1), and which enable analogous procedures such as geometric
programming to be developed.

The generalization proposed here is different from the one given in Ref.
1: the generalized geometric dual program in Ref. 1 is derived from
geometric inequalities and in general is not convex. (Provided that the
appropriate geometric inequalities are available, the nonconvexity is the
main disadvantage of that approach.) The generalized dual program pro-
posed here is derived from the properties of conjugate functions and it is
convex. The only disadvantage of this approach is that the dual program has
more variables than the primal one. But in many cases the number of
variables can be reduced, e.g., in the case of classical geometric programs or
linear programs.

It is worth noting that if G* is the conjugate function of a differentiable
convex function of n variables, and A >0, then

i xyi =AG(x)+AG*(y/2),

i=1

lReprinted from Lectures in Applied Mathematics, Volume 11, Mathematics of the
Decision Sciences, Part], Pages 401-422 by permission of the American Mathematical
Society, 1968.

% Author’s address: Comenius University, Matematicky pavilon PF UK, Mlynska dolina,
816 31 Bratislava, Czechoslovakia.
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6 M. Hamela

and if A (y) =0 is a homogeneous function such that A(VG(x)) =1, then
Y xy:i =A(Y)G(x)+A()G*(y/A(y)) =A(y)G(x) — F(y)

is a geometric inequality in the sense defined in Ref. 1.

Now we see that, to apply the approach given in Ref. 1, we need the
explicit form of the function A. In our approach A is considered simply as an
additional new variable.

For the sake of an easier exposition, it is convenient to restate briefly the
main ideas of Rockafellar’s theory given in Ref. 2. In the first part the
necessary prerequisites are developed and in the second part Rockafellar’s
results are presented. In the third part the special case of Rockafellar’s dual
programs—the general geometric dual programs—is studied and two
theorems are given analogous to those in Ref. 1.

Finally some concrete examples are discussed.

2. Basic Concepts
2.1. Convex Functions
Definition 2.1. The set C CR" is said to be convex if

v V Axi+(1-2A)xeC.

x1,x2€C 0=A=1

Proposition 2.1. A nonempty convex set C CR" has a nonempty
relative interior r int C (see Ref. 3, p. 16).

Definition 2.2. A real-valued function f defined on a nonempty convex
set C CR" is said to be convex on C if

v Vo fAxi+(1=2)x2) SAf(x1) + (1 —A)f(x2).

x1,x2€C 0=A=1

Proposition 2.2. If f is convex on C and x; € r int C, then

3 V. f(x)—f(x1)=(x—x1)x*.
x*eR" xeC
[This result follows from the existence of a nonvertical supporting
hyperplane (see Ref. 4, p. 398) and the Hahn—-Banach theorem (see Ref. 5,

p. 28).]



