Elementary Theory of

Electric and Magnetic Fields

Warren B. Cheston




Elementary T heory of

Electrlc and M agnetzc Flelds

Warren B. Cheston

Professar of Physics
_ University of Minnesota
Minneapolis, Minnesota

John Wiley & Sons, Inc. New York - London - Sydney



Copyright © 1964 by John Wiley & Sons, Inc.

All Rights Reserved

This book or any part thereof

must not be reproduced in"ani form

without the written permissioniof the publisher.

"

Library of Congress Catalog Card Number: 6417135
Printed in the United States of America_



Preface

The theory of electric and magnetic fields is one aspect of classical physics.
An author who chooses such a subject for a text can add little if anything
to the fund of knowledge physicists possess of the structure of the physical
world. Yet old theories, and physical theories age exceedingly rapidly in
the ' twentieth-century world, bear re-examination from time to time,
not with the intent of modification but rather of recasting in a form more
suitable to the present era. In other words, a contemporary text on 4 -
classical subject is an attempt at style. This is a text written for students
of physics who exist in the 1960’s and who will shortly jein the ranks of
practicing physical scientists whose view of the physical world is par-
ticularly characteristic of the 1960’s. It is a text written for a full year’s
course for upper division or senior college students; it presupposes some
exposure to electricity and magnetism in a general physics course. It
also presupposes ‘a facility with mathematical concepts° which: ten years
ago could only be assumed. of beginning graduate*students: - Above afl,
as its title suggests, this is a text in fields, and little if any attenition is‘paid
to circuits and devices. There is some attempt, particularly in the final
chapters, to discuss subjects ‘of contemporary. interest: such ‘as plasma
physics, but serious students of these subjects wxll ﬁnd tlie matenal in thls
text a limited introduction. © -~ ¢

The underlyifig theme &f the first half of the text, before the int#oducuon
‘of the ‘Maxwell-Lorentz théory of electromagnétism; is ‘the one-to-bne
cofrespondei‘fee bétween' eléctrostatic and: faghiétostatic (steady-dtats)
plienidinéna:  For students who-have read thié ehapters on-elbctrieit)‘*ahd
maghetism, ‘the " transition to electromagnétism’ shotld e ‘séen ‘as” an
obvious outcome of the basic similarity between the sepavate theories of
elcctdc:ty and “magnetism.~ Chapters 2-4 concérn themselves with “a
dlscussmn of the ‘electrostatics of charges residing 'ih vatudm or upon
condlicting surfates - This discussion is based on Couldfhb’s taw 6f force
between two fixed charged partlclcs “Chapter 5 is a discussion of “the
modifications brought about by the presence of noticonducting material
media, and a macroscopic theory of the behavior of hatérial media fri the
presence of static ‘charges is developed. ' Chapters ‘-8 ‘concefn’ theth-
selves with a discussion of the magnetic effects produced by slowly moving -
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vi Preface

charges in approximately uniform motion. The discussion of magneto-
statics is based on the empirical law of force between slowly moving
charged particles, and the discussion parallels that of electrostatics. In
Chapter 9 the effect of material media on steady-state magnetic phenomena
is discussed, and a macroscopic theory of magnetism is introduced.
Chapters 10 and Il serve as an introduction to the Maxwell-Lorentz
equations of electromagnetism, and emphasis is placed in these chapters
on electromagnetic waves in free space and guided waves. Chapter 12isa
brief discussion of the macroscopic Maxwell-Lorentz equations which are
suitable for the discussion of material media, and the behavior of electro-
magnetic waves in conductors and msulators is discussed. In Chapter 13
the radiation of clectromagnetlc waves from systems of charges and
currents is introduced. Chapter 14 concerns itself with two main topics:
the motion of single charges in electric and magnetic fields and the
behavior of an ensemble of charged particies, the latter being a brief
discussion of magnetohydrodynamics and plasma physics. The final
chapter, Chapter 15, is an abbreviated discussion of those aspects of
solid-state physics which are relevant to a text on electricity and magnet-
ism. Some of the subjects treated in this last chapter are electric and
magnetic susceptibilities, ferromagnetism, and superconductivity. The
book begius, Chapter 1, with a very condensed treatment of the salient
mathematical techniques to be used throughout the text. It is assumed
that this chapter will serve as a reference to the student and that the
lecturer will begin his discussion with Chapter 2. The text is supple-
mented by a mathematical appendix consisting of a list of useful formulas
and identities, and an appendix in which the various systems of units are
commented upon.

Since the text aims at adopting a style con51stent with the era in which it
is written, attention should be called to a few of the topics of a strictly
contemporary character. Chapter 6 concludes with a comparison between
electrostatics and magnetostatics as to the behavior of the quantities
related in the two theories under time reversal and space inversions;
Chapter 9 contains a discussion of the Meissner effect and superconduc- .
tivity; Chapter 12 discusses a simplified version of Kramers’ classical
dispersion theory; Chapter 14 concerns itself to a large extent with a
subject of contemporary interest, namely, the physics of plasmas; Chapter
15 attempts to present a modern point of view concernirig the behavior of
real materials in electric and magnetic fields.

A text does not get written without the participation, some of it un-
intentional, of a large number of people. Included among these are the
students in the classes to which I have lectured during the past ten years,
and my colleagues at the University of Minnesota who have been the
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subjects of my many questions concerning certain aspects of electricity and
magnetism which appeared to me to be subject to particularly murky
discussions in the existing texts. Finally, grateful acknowledgment is
offered to the quantity and high quality of the work of Mrs. Joyce Fay
and Mrs. Kay Kirwin who prepared the manuscript for publication.

Warren B. Cheston

Uhiversity of Minnesota /

June 1964
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1 Mathematical and Mechanical

Preliminaries

In a discussion of electric and magnetic fields, the physical phenomena
under investigation concern the interaction of charged objects and current-
carrying elements among themselves. Such a discussion necessarily
presumes a certain prior knowledge of the behavior of objects under the
application of forces. The general ideas of analytical mechanics form the
background to this discussion. In addition, a familiarity with the analyt-
ical tools employed in physics is essential. These analytical tools are the
logic and techniques of mathematics, particularly those of the calculus,
vector analysis, and vector calculus. A text in electric and magnetic
fields cannot encompass a detailed discussion of analytical mechanics or
mathematics, although certain ideas from these areas will be introduced
as needed. Such mechanical or mathematical features will be handled
in a rather cursory fashion. Nevertheless the discussion will be sufficiently
complete to enable the student to understand the particular physical
phenomenon under consideration. It is assumed that the student will
~ be sufficiently curious to explore these ideas and techniques Turther in
texts devoted entirely to the discussion of analytical mechanics or
mathematics.
Although many mathematical techniques will be introduced as the
physical ideas are developed, certain basic techniques will be set forth as a
prelimjnary to the main discussion.

- 1.1 Vector Analysis

- For the analytical description of certain physical entities, it is necessary
to assign one number to represent the entity. For example, one number
suffices to represent the mass of an object. An entity which can be
described by giving one number is said to be a scalar. A scalar quantity
may be restricted to take on positive values only (i.e., mass, temperature
on the Kelvin scale, length, etc.) or it may assume both positive and
- negative values (i.e., mechanical energy; temperature on the centigrade
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2 Elementary Theory of Electric amd Magnetic Fields

scale, electric charge, etc.). Since all physical quantities are of necessity
real, scalar quantities are represented by real numbers.

A given scalar quantity may depend in some way on the value of another
scalar quantity. For example, the temperature of an object may depend
on the time at which it is measured. Here, the temperature would be
represented by a scalar function of the time.

There are many physical quantities for which it is necessary to specify
more than ohe number in order to determine the quantity completely.
For example, to locate the position of a point on a plane, or on any
physical surface, it is necessary to specify two numbers. To locate the
position of a point in space, it is necessary to specify three numbers.
Many of the physical entities of this type can be represented by vectors.
In general, the vectors used to represent physical quantmes are specified
by three numbers.

All the vectors dealt with in this text represent physical quantities
which have a magnitude and an orientation defined with respect to some
arbitrarily fixed direction in space. Since it is customary to represent a
vector by a directed line segment (see Fig. 1.1), the magnitude of a vector
is represented by the length of the directed line segment. To define the
direction of a vector, a set of three mutually perpendicular straight lines—
a set of coordinate axes—is erected, and the orientation of the directed
line segment with respect to these coordinate axes represents the direction
of the vector. Any vector can be represented by the projection of the
vector.along the three coordinate axes. These projections are numerically
equal to the magnitude of the vector multiplied by the direction cosines.

¢

N>

o

~

Fig. 1.1 A vector quantity A is represented by a directed line-segment. The
orientation of the vector is given by the cosines of the angles between the vector and the -
X, ¥, z coordinate axes.



Mathematical and Mechanical Preliminaries 3

of the vector with respect to the coordinate axes (see Fig. 1.1). These
projections are called the components of the vector and are a triad of
numbers.

The three coordinate axes are customarily ldbelled the x-axis, the y-axis,
and the z-axis, respectively. In.this text, the axes (x, y, z) are always.
labelled in the right-hand sense. The components of the vector are,
consequently referred to as the x, y, and z components of the vector.
This designation of a vector is called its Cartesian representation. An
arbitrary vector A is therefore represented by three numbers'(4,, 4, 4.).
The magnitude of the vector is written as

Al=A4=VAZ+ A+ A (1.1

and the orientation of the vector is specified by the three direction cosines

as
cosa = A,/4, cosf = A,[A, cosy = A,[A (1.2)

with the restriction implied by eq. 1.1, namely
N cos? a + cos? B + cos?y = 1.

A very useful concept is that of a umit vector. . A unit vector is one
whose magnitude is 1 (dimensionless). It is usually represented by
affixing a “karat” symbol on top of the vector:

|A|= ;  A.=cose, A, =cosp, A,=cosy. (1.3)

The Cartesian components of a unit vector are simply the direction
cosines of the vector. Any vector A can be written in terms of its mag-
nitude 4 and the unit vector A which is parallel to it; for example,

A = 4A, ‘ - (14

- A vector can be represented in terms of its components (4,, 4,, 4.) amd
unit vectors along the coordinate axes (8, §, 2). This representation can
be obtamed from the above and is written as

A=A+ A§+ A5 . (L.5)

Often several vector quantities are considered simultaneously. If the
vectors are expressed in the same units or dimensions, the “sum” of
the vectors is a well-defined concept. Consider three vectors A, B, C.
The sum of the vectors i also a vector and is uniquely defined as

A+B+C=D-= Dﬁ+DJ+DJ (1.6)
where D,=A4,+ B, +C,
D,=4,+B,+ C,
D,=A4,4+B,+C,
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From eq. 1.6, it is obvious that vector addition is an associative opefation,
that is,
A+B)+C=A+B+0)

1t is also a commutative operation, that is,
A+C+B=B+C+A=-...

Sometimes it is necessary to know the relative orientation of two vectors
A and B (see Fig. 1.2). The relative orientation of A and B is specified
by the angle between them. Since  is restricted to lie between 0 and 2«
radians (or alternatively between —= and = radians), it is necessary to
specify both the sine and the cosine of # to determine it completely.
The cosine of the relative orientation of two vectors is involved in the
“scalar” or “inner” product of two vectors. The scalar product of the
vectors A and B is defined as :

A'B=|A|[B|cosd. (1.7

It is quite obvious from the definition of a scalar product that it is a
commutatxve operation:

A‘B=B-A (1.8)

The scalar product of A and B can be written in terms of the Cartesian
components of these vectors

A'B=(48+ A9+ A2 (B& + B + B.A).

a
n

Fig. 1.2 The relative orientation of two vectors A and B is given by the angle &
between them. The angle # in turn is determined by specifying its cosine and sine.
' The cosine of & is involved in the scalar product of A and B; the sine of & is involved
in the vector product of A and B. The unit vector & is perpendicular to the plane
formed by the vectors A and B.
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Since the unit vectors R, %, 2 are mutually orthogonal (ie, &-§ =
§:2=2-% = 0), it follows that

A-B = A.B, + A,B, + 4,B,. 19

Use can be made of the concept of a scalar product to arrive at ar expres-
sion for the Cartesian components of a vector alternative to that already
employed. Taking cognizance of eqs. 1.2 and 1.9, it follows that

Ar=AR A, =A§ A, =A"2 (1.10)

The sine of the relative orientation angle of two vectors is.involved
in the vector product of two vectors. This vector product is given the
symbol A x B and is defined as

A x B = |A| |B] sin 58 (BT

where fi = unit vector perpendicular to the plane defined by A and B.
The direction of fi is arbitrarily chosen so that A, B, and # form a right-
- handed triad of vectors. It is evident that the vector product of two
vectors is a noncommutative operation. In fact,

AxB=-BxA - (1.12)

as can be seen directly from eq. 1.11.  The vector product can be written
imterms of the Cartesian components of the vectors involved and the unit
vectors parallel to the Cartesian coordinate axes.

AxB= (Ak+A,i+A.2)x(Bﬁ+B,9+Bzz)
using such relations as

Ex§=2 §x2=2%8 Ex &= 9
Rx=Fx§=2%x2=0,

it follows after some computation that

AXB= (4B, - AB)R + (4.5, — AB)}
+ (4B, — A,B)8. (1.13)

There are many vector identities of some usefulness some of which are
listed below. They can all be developed in a straightforward manner by
Cartesian expansion of the expressions involved. .

A‘-(BxC),=C°(AxB)=, *(Cx A) o (1.14)
Ax(BxC) =(A"C)B - (A-B)C - (1.15)
(AxB)-(CxD)=(A-C)B-D) - (A-D)B-C). (1.16)
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1.2 Coordinate Systems

All physical phenomena take place in space. Whether the phenomena
under consideration are mechanical, electrical, etc., they take place at a
given time at a given point in space. If one wishes to describe a point in
space analytically, it is necessary to relate the’ point in some way to a
given reference point. It is evident that it is not only necessary to specify
“how far” the point under consideration is from the reference point
but also in what “direction.” It is clear therefore that it is possible to
represent a point in space by a vector, called a position vector and given the
symbol r. . The position vector (or simply the position) can be given by
the three Cartesian components of r defined by

r=r+r9+r2

Without any danger of misinterpretation, a more common notation
will be adopted: 4 .
r=xt+y¥ + 22 , 117

where Cx=(@R), y=(@¥), z=("92).

. The Cartesian axes to which r is referred is a set of axes whose origin
is located at the reference point, but whose orientation is arbitrary but

fixed ab initio.

Most physical quantities to be considered in this text fall into two
classes: (1) scalar point functions, and (2) vector point functions. A
scalar point function is a scalar function of the vector variabler. A scalar
point function is sometimes called a scalar field. The electrostatic
potential function ¢(r) is such a scalar field. A vector point function
is a vector function of the variable r; for example, at every point in space
there exists a given value for the vector quantity under consideration.
A vector point function is sometimes referred to as a vector field. The
-electric field E(r) and magnetic field B(r) are vector fields. -

A vector point function can also be decomposed into its components;
the value of the vector function G at r may be written as

G(r) = G.(O% + G,(§ + G2 .- (l.‘18)

where »
G)=R"Gx), GO =§-G), G(r)=12- G(r).

Equation 1.18 may be interpreted as follows. At every point in space r is
imbedded a set of Cartesian axes. The value of the vector point function
at r is a position vector in this Cartesian space; the projections of G on the
coordinate axes are the Cartesian components of the vector G in this
Cartesian space.
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Fig. 1.3 In cylin'drical coordinates, the position vector r is specified by the triad of
numbers (p, ¢, <).

Coordinate systems other than Cartesian may conveniently represent a
vector point function. The most widely used coordinate systems other
than Cartesian are (1) cylindrical, and (2) spherical polar. Cylindrical
coordinates are defined as follows (see Fig. 1.3). One of the three'com-
ponents of r is the projection of r oil the Cartesian z-axis or the so-called
azimuthal axis. This axis is designated in cylindrical coordinates by a
unit vector . The other cylindrical components of r are obtained by
projecting r ‘onto the plane perpendicular to the azimuthal axis (the x-y
plane). ‘The magritude of this projection is given the symbol p. A unit
vector from the origin parallel te the projection of r is given the symbol §.
p is obviously perpendicular to £. The. third orthogonal direction is
defined by the unit vector ¢ which is perpendicular to both p and 2.
It is defined in such a way that (8,-$, £) form a right-handed ‘orfhogonal
system. - It is obvious that & lies in the Cartesian x-y plane. The position
vector r can be written i in cylmdnca,l coordmat_es as .

L or=pp + st ' ©(119)
where P E(l' ) and 2= (r-2). ” “

‘ (J: r=0 for allr) The posmon vector r is not defined by the numbers
p and « alone; a third number is needed and that number is taken to be the
angle ¢ that § makes with the Cartesian x-axis. Evidently § is a function
of ¢. Then r is specified by giving the triad (p, $, #). A vector point
function can also be written in cylindrical coordinates, i.e.,

: G®) = G(p, $, 2). |
and _ G(r) = G,(0f + GoMP + G(r)2 (1.20)

with G, =p'G, Go=6¢-G G =%G.



