. - R ;-‘.Lgﬁ'!;?” . 3 % ¥ # T
. '”'%‘Pﬁik##»%uﬁwﬁﬁ#ﬁﬁﬁ%%ﬂ
N {'#%m* e ¥ #* 5
PRI NI

1___—-“

FOURTH EDITION

Applied Statistics
and the SAS
Programming Language

Ronald P. Cody

ROBERT WOOD JOHNSON MEDICAL SCHOOL

Jefﬁ;?’ K Smith
rur€eErdbvEsT

PRENTICE HALL, Upper Saddle River, New Jersey 07458

Library of Congress Cataloging-in-Publication Data

Cody, Ronald P. .
Applied statistics and the SAS programming language / Ronald P.
Cody, Jeffrey K. Smith — 4th ed.
p. cm.
Includes bibliographical references (p. -) and index.
ISBN 0-13-743642-4 (pbk.)
1. SAS (Computer file) 2. Mathematical statistics-Data
processing. 1. Smith, Jeffrey K. IL Title.
QA276.4.C53 1997
519.5'0285°5369-dc21 97-1737
CIP

Acquisition editor: Ann Heath

Editorial assistant: Mindy Ince

Editorial director: Tim Bozik

Editor-in-chief: Jerome Grant

Assistant vice president of production and manufacturing: David W. Riccardi
Editorial/production supervision: Nicholas Romanelli
Managing editor: Linda Mihatov Behrens

Executive managing editor: Kathleen Schiaparelli
Manufacturing buyer: Alan Fischer

Manufacturing manager: Trudy Pisciotti

Marketing manager: Melody Marcus

Marketing assistant: Jennifer Pan

Creative director: Paula Maylahn

Cover designer: Jayne Conte

= ©1997, 1991 by Prentice-Hall, Inc.
= Simon & Schuster/A Viacom Company
= Upper Saddle River, New Jersey 07458

SAS is a registered trademark of SAS Institute, Inc., Cary, North Carolina

All rights reserved. No part of this book may be reproduced, in any
form or by any means, without permission in writing from the publisher.

Cover illustration: From the manuscripts of Leonardo DaVinci; published by
Charles Raviasson-Mollien, 6 vols., Paris, 1881-91.

Printed in the United States of America

ISBN: 0-1L3-743b42-H

Prentice-Hall, International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada, Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

2

T

To our parents,

Ralph and Bettie Smith

and

Philip and Margaret Cody

. Contents

Applied Statistics and SAS Software

Chapter 1 A SAS Tutorial 1

Introduction 1

Computing with SAS Software: An Illustrative Example 2
Enhancing the Program 7

SAS Procedures 10

Overview of the SAS Data Step 13

Syntax of SAS Procedures 13

Comment Statements 15

References 18

TQmmYunws

Chapter 2 Describing Data 22

Introduction 22

Describing Data 22

More Descriptive Statistics 26

Descriptive Statistics Broken Down by Subgroups 32

Frequency Distributions 34

Bar Graphs 35

Plotting Data 42

Creating Summary Data Sets with PROC MEANS and PROC UNIVARIATE 45
Outputting Statistics Other Than Means 53

Creating a Summary Data Set Containing a Median 54

4o
el

QMmN w

T g

g‘ Chapter 3 Analyzing Categorical Data 58

Introduction 58

Questionnaire Design and Analysis 59

Adding Variable Labels 63

Adding “Value Labels” (Formats) 66

Recoding Data 70

Using a Format to Recode a Variable 73

Two-way Frequency Tables 75

A Short-cut Way of Requesting Multiple Tables 78

HQmmuowy

wiii Contents

Chapter 4

Chapter 5

Chapter 6

Chapter 7

DO ZE MR e

Computing Chi-square from Frequency Counts 79

A Useful Program for Multple Chi-square Tables 380

McNemar's Test for Paired Data 81

Odds Ratios 83

Relative Risk 86

Chi-square Test for Trend 88

Mantel-Haenszel Chi-square for Stratified Tables and Meta Analysis 90
“Check All That Apply” Questions 92

Working with Date and Longitudinal Data 101

Mmoo w»

Introduction 101

Processing Date Variables 101

Longitudinal Data 106

Most Recent (or Last) Visit per Patient 109
Computing Frequencies on Longitudinal Data Sets 110

Correlation and Regression 115

PRI QmmoNwp

Introduction 115

Correlation 115

Significance of a Correlation Coefficient 118
How to Interpret a Correlation Coefficient 119
Partial Correlations 120

Linear Regression 121

Partitioning the Total Sum of Squares 124
Plotting the Points on the Regression Line 125
Plotting Residuals and Confidence Limits 126
Adding a Quadratic Term to the Regression Equation 128
Transforming Data 129

Computing Within-subject Slopes 133

T-tests and Nonparametric Comparisons 138

s MmO QWP

Introduction 138

T-test: Testing Differences between Two Means 138
Random Assignment of Subjects 141

Two Independent Samples: Distribution Free Tests 143
One-tailed versus Two-tailed Tests 145

Paired T-tests (Related Samples) 146

Analysis of Variance 150

A
B.

Introduction 150
One-way Analysis of Variance 150

Chapter 8

Chapter 9

FOmmoun

 —————— e |

Contents Ix

Computing Contrasts 158

Analysis of Variance: Two Independent Variables 159
Interpreting Significant Interactions 163

N-way Factorial Designs 170

Unbalanced Designs: proc Gim 171

Analysis of Covariance 174

Repeated Measures Designs 181

mmUNwP

o

Introduction 181

One-factor Experiments 182

Using the REPEATED Statement of PROC ANOVA 168

Two-factor Experiments with a Repeated Measure on One Factor 189
Two-factor Experiments with Repeated Measures on Both Factors 197
Three-factor Experiments with a Repeated Measure on the Last
Factor 202

Three-factor Experiments with Repeated Measures on Two Factors 209

Multiple-Regression Analysis 221

CRuRvEeR--Tg

Introduction 221

Designed Regression 226

Nonexperimental Regression 226

Stepwise and Other Variable Selection Methods 228
Creating and Using Dummy Variables 234

Logistic Regression 235

Chapter 10 Factor Analysis 250

Chapter 11

mmoOw»

Introduction 250

Types of Factor Analysis 250

Principal Components Analysis 251
Oblique Rotations 258

Using Communalities Other Than Ope 259
How to Reverse Item Scores 262

Psychometrics 265

OmmoawpP

Introduction 265

Using SAS Software to Score a Test 265

Generalizing the Program for a Variable Number of Questions 268
Creating a Better Looking Table Using PROC TABULATE 270

A Complete Test Scoring and Item Analysis Program 273

Test Reliability 276

Interrater Reliability 277

x Contents

Chapter 12

Chapter 13

Chapter 14

Chapter 15

SAS Programming

The SAS INPUT Statement 280

PR =T Qmmunwp

Introduction 280

List Directed Input: Data values separated by spaces 280
Reading Comma-delimited Data 281

Using INFORMATS with List Directed Data 282

Column Input 283

Pointers and Informats 284

Reading More than One Line per Subject 285

Changing the Order and Reading a Column More Than Once 286
Informat Lists 286

“Holding the Line”—Single- and Double-trailing @’s 287
Suppressing the Error Messages for Invalid Data 288
Reading “Unstructured” Data 289

External Files: Reading and Writing Raw and System Files 298

~=EQmmMY 0w P

Introduction 298

Data in the Program Itself 298

Reading ASCII Data from an External File 300

vFILE Options 302

Writing ASCII or Raw Data to an External File 304
Creating a Permanent SAS Data Set 305

Reading Permanent SAS Data Sets 307

How to Determine the Contents of a SAS Data Set 308
Permanent SAS Data Sets with Formats 309

Working with Large Data Sets 311

Data Set Subsetting, Concatenating, Merging, and Updating 319

mmoOwP

Introduction 319

Subsetting 319

Combining Similar Data from Multiple SAS Data Sets 321
Combining Different Data from Multiple SAS Data Sets 321
“Table Look up” 324

Updating a Master Data Set from an Update Data Set 326

Working with Arrays 329

O ow?>

Introduction 329

Substituting One Value for Another for a Series of Variables 329
Extending Example 1 to Convert All Numeric Values of 999 to
Missing 331

Converting the Value of N/A (Not Applicable) to a Character Missing
Value 332

Contents xi

Converting Heights and Weights from English to Metric Units 333
Temporary Arrays 334

Using a Temporary Array to Score a Test 336

Specifying Array Bounds 338

Temporary Arrays and Array Bounds 338

Implicitly Subscripted Arrays 339

= Qo

Chapter 16 Restructuring SAS Data Sets Using Arrays 343

Introduction 343

Creating a New Data Set with Several Observations per Subject from a

Data Set with One Observation per Subject 343

C. Another Example of Creating Multiple Observations from a Single
Observation 345

D. Going from One Observation per Subject to Many Observations per
Subject Using Multi-dimensional Arrays 347

E. Creating a Data Set with One Observation per Subject from a Data
Set with Multiple Observations per Subject 348

F. Creating a Data Set with One Observation per Subject from a Data

Set with Multiple Observations per Subject Using a Multi-dimensional

Array 350

s

Chapter 17 A Review of SAS Functions:
: Partl. Functions other than character functions 353

Introduction 353

Arithmetic and Mathematical Functions 353

Random Number Functions 355

Time and Date Functions 356

The wpuT and put Functions: Converting Numerics to Character, and
Character to Numeric Variables 358

The LAG and piF Functions 360

mo 0w

ol

Chapter 18 A Review of SAS Functions:
Partll. Character Functions 364

Introduction 364

How Lengths of Character Variables Are Set in a SAS Data Step 364
Working with Blanks 367

How to Remove Characters from a String 368

Character Data Verification 368

Substring Example 369

Using the sussTR Function on the Left-hand Side of the Equal Sign
370

Doing the Previous Example Another Way 371

Unpacking a String 372

Parsing a String 373 '
Locating the Position of One String within Another String 373

Rerm@ Qmimobow»

e ———— e i 4

xii Contents

Chapter 19

Chapter 20

wOZ K

Changing Lower Case to Upper Case and Vice Versa 374
Substituting One Character for Another 375

Substituting One Word for Another in a String 376
Concatenating (Joining) Strings 377 -

Soundex Conversion 378

Selected Programming Examples 382

“= R QOmIMUNwP

Introduction 382

Expressing Data Values as a Percentage of the Grand Mean 382
Expressing a Value as a Percentage of a Group Mean 384
Plotting Means with Error Bars 385

Using a Macro Variable to Save Coding Time 386

Computing Relative Frequencies 387

Computing Combined Frequencies on Different Variables 389
Computing a Moving Average 391

Sorting within an Observation 392

Computing Coefficient Alphs (or kr-20) in a Data Step 393

Syntax Examples 395

R T QmmUowp

PROC LOGISTIC 400
PROC MEANS 400
PROC NPAR1WAY 401
proC PLOT 401

PROC PRINT 401

PROC RANK 402
PROCREG 402

PROC SORT 403

PROC TTEST 403

PROC UNIVARIATE 403

Introduction 395
PROC ANOVA 396
PROC APPEND 396
PROC CHART 396
PROC CONTENTS 397
PROC CORR 397
PROC DATASETS 397
PROC FACTOR 398
PROC FORMAT 398
PROCFREQ 399
PROCGLM 399

CHYBONOZE

Problem Solutions 404

Index 439

Preface to the Fourth Edition

When we began creating this fourth edition, several facts were clear: First, SAS soft-
ware continues to evolve and improve. Second, our programming techniques have
also improved. Third, several statistical techniques (such as logistic regression) have
become popular and required coverage in this edition.

We have met many readers of earlier editions at meetings and conferences and
were delighted to hear good things and constructive criticisms of the book. These we
have taken to heart and attempted to improve old material and add relevant new
topics. This fourth edition is the result of such reader reaction.

Most researchers are inherently more interested in the substance of their re-
search endeavors than in statistical analyses or computer programming. Yet, con-
ducting such analyses is an integral link in the research chain (all too frequently, the
weak link). This condition is particularly true when there is no resource for the ap-
plied researcher to refer to for assistance in running computer programs for statisti-
cal analyses. Applied Statistics and the SAS Programming Language is intended to
provide the applied researcher with the capacity to perform statistical analyses with
SAS software without wading through pages of technical documentation.

The reader is provided with the necessary SAS statements to run programs for
most commonly used statistics, explanations of the computer output, interpretations
of results, and examples of how to construct tables and write up results for reports
and journal articles. Examples have been selected from business, medicine, educa-
tion, psychology, and other disciplines.

SAS software is a combination of a statistical package, a data-base manage-
ment system, and a high-level programming language. Like SPSS, BMDP, Systat,
and other statistical packages, SAS software can be used to describe a collection
of data and produce a variety of statistical analyses. However, SAS software is
much more than just a statistical package. Many companies and educational insti-
tutions use SAS software as a high-level data-management system and program-
ming language. It can be used to organize and transform data and to create
reports of all kinds. Also, depending on which portions of the SAS system you
have installed in your computer (and what type of computer system you are run-
ning), you may be using the SAS system for interactive data entry or an on-line
system for order entry or retrieval.

This book concentrates on the use of the SAS system for the statistical analysis
of data and the programming capabilities of SAS software most often used in edu-
cational and research applications.

The SAS system is a collection of products, available from the SAS Institute in
Cary, North Carolina. The major products available from the SAS Institute are:

xiv Preface

Base SAS® The main SAS module, which provides some data manipula-
tion and programming capability and some elementary de-
scriptive statistics

SAS/STAT ® The SAS product that includes all the statistical programs ex-

cept the elementary ones supplied with the base package

SAS/GRAPH ® A package that provides high-quality graphs and maps. Note
that “line graphics” (the graphs and charts that are produced
by normal character plots) are available in the base and
SAS/STAT packages. SAS/GRAPH adds the ability to pro-
duce high-quality camera-ready graphs, maps, and charts.

SAS/FSP ® These initials stand for the Full Screen Product. This package
allows you to search, modify, or delete records directly from a
SAS data file. It also provides for data entry with sophisticated
data checking capabilities. Procedures available with Fsp are
FSBROWSE, FSEDSIT, FSPRINT, FSLIST, and FSLETTER.

SAS/AF ® AF stands for the SAS Applications Facility. This product is
used by data processing professionals to create “turn key” or
menu systems for their users. It is also used to create instruc-
tional modules relating to the SAS system.

SAS/ETS ® The Econometric and Time Series package. This package con-
tains specialized programs for the analysis of time series and
econometric data.

SAS/OR ® A series of operations research programs.
SAS/QC® A serles of programs for quality control.
SAS/IML ® The Interactive Matrix Language module. The facilities of

IML used to be included in PROC MATRIX in the version 5 re-
leases. This very specialized package allows for convenient ma-
trix manipulation for the advanced statistician.

SAS, SAS/STAT, SAS/GRAPH, SAS/FSP, SAS/AF, SAS/ETS, SAS/OR,
SAS/QC, and SAS/IML are registered trademarks or trademarks of SAS Institute
Inc. in the USA and other countries. ® indicates USA registration.

SAS software now runs on a variety of computers, from personal computers to
large multimillion dollar mainframes. The original version of the SAS system was
written as a combination of PL/1 and IBM assembly language. Today, SAS software
runs under Windows and Windows 95 on IBM compatible minicomputers, on most
Macintosh computers, under UNIX on a large number of minicomputers and work-
stations, on IBM computers under a variety of operation systems, on Digital Equip-
ment VAX computers, and others too numerous to mention. The major reason for the
ability of SAS software to run on such a variety of machines is that all SAS software
was rewritten in C and designed so that most of the code was system-independent.
The conversion of the entire system to the C programming language was one of the
largest (and most successful) programming projects ever undertaken. To migrate the
SAS system to another computer or operating system, only a small system-dependent
portion of code needs to be rewritten. The result is that new versions of SAS software

Preface xv

are made available for all computers very quickly, and the versions of SAS systems
from one computer to another are much alike.

Learning to program is a skill that is difficult to teach well. While you will find
our examples “reader-friendly” and their logic easy to follow, learning to write your
own programs is another matter. Only through lots of practice will your program-
ming skills develop. So, when you finish a chapter, please spend the time doing as
many problems as you can. We wish you happy programming.

We express our gratitude to two colleagues who reviewed the manuscript and
made many comments beneficial to this revision of the text. Our thanks, therefore,
to Sylvia Brown and Robert Hamer, at the Robert Wood Johnson Medical School.
Our sincere thanks also to Ann Heath, acquisitions editor for statistics at Prentice
Hall, for her encouragement and support, and to Nicholas Romanelli for his superb
editing, patience, and good cheer.

Ron Coby
JEFFREY SMITH

CHAPTER

A SAS Tutorial

. Introduction

. Computing With SAS Software: An Illustrative Example
. Enhancing the Program

. SAS Procedures

. Overview of the SAS DATA Step

. Syntax of SAS Procedures

. Comment Statements

References

ZTOmmIaw»

A. Introduction

For the novice, engaging in statistical analysis of data can seem as appealing as going
to the dentist. If that pretty much describes your situation, perhaps you can take
comfort in the fact that this is the fourth edition of this book—meaning that the first
three editions sold pretty well, and this time we may get it right. Our purpose for this
tutorial is to get you started using SAS software. The key objective is to get one pro-
gram to run successfully. If you can do that, you can branch out a little bit at a time.
Your expertise will grow.

The SAS System is a combination of programs originally designed to perform
statistical analysis of data. Other programs you may have heard of are SPSS, BMDP,
or SYSTAT. If you look at personal computer magazines, you might run across other
programs, primarily designed to run on personal computers. Since its inception, the
SAS system has grown to where it can perform a fairly impressive array of nonsta-
tistical functions. We’ll get into a little of that in later chapters. For now, we want to
learn the most basic rudiments of the SAS system. If you skipped over it, the Preface
to the fourth edition contains some history of SAS software development and a
more complete overview of the capabilities of SAS software.

To begin, SAS software runs on a wide variety of computers and operating
systems (computer people call these platforms), and we don’t know which one
you have. You may have an IBM compatible personal computer running Windows
or, perhaps, Windows 95. You may have a Macintosh computer, or you may be
connected to a network or a mainframe computer by way of a modem or network

2 Chapter 1 / A SAS Tutorial

connection. You may only have a sophisticated VCR, which you think is a com-
puter. If you are unsure of what platform you are using or what version of SAS
software you are using, ask someone. As a matter of fact, right now would be a
good time to invite the best computer person you know to lunch. Have that per-
son arrive at your office about an hour before lunch so you can gO over some
basic elements of your system. You need to find out what is necessary on your
computer to get the SAS system running. What we can teach you here is how to
use the SAS system. and how to adapt to your computer system.

If you are running on a mainframe, you may well be submitting what are called
“batch” jobs. When you run batch jobs, you send your program (across a phone
line or a network from your personal computer or terminal) to the computer. The
computer runs your program and holds it until you ask for it or prints out the re-
sults on a high-speed printer. You may even need to learn some Job Control Lan-
guage (which you have to get from your local computer folks), and then you can
proceed.

If you are running on a personal computer, or running in what is called interac-
tive mode on a minicomputer or mainframe, then you need to learn how to use the
SAS Display Manager. The look and feel of SAS once you are in the Display Man-
ager is pretty much the same whatever platform you are using. If you are un-
daunted, take a deep breath and plunge into the real content in the next section. If
you are already daunted, take a minute and get that lunch scheduled, then come
back to this.

B. Computing with SAS Software: An Illustrative Example

SAS programs communicate with the computer by SAS “statements.” There are
several kinds of SAS statements, but they share a common feature—they end in a
semicolon. A semicolon in a SAS program is like a period in English. Probably the
most common error found in SAS programs is the omission of the semicolon. This
omission causes the computer to read two statements as a run-on statement and in-
variably fouls things up.

SAS programs are comprised of SAS statements. Some of these statements
provide information to the system, such as how many lines to print on a page and
what title to print at the top of the page. Other statements act together to create
SAS data sets, while other SAS statements act together to run predefined statisti-
cal or other routines. Groups of SAS statements that define your data and create a
SAS data set are called a DATA step; SAS statements that request predefined rou-
tines are called a PROC (pronounced “prock”) step. DATA steps tell SAS pro-
grams about your data. They are used to indicate where the variables are on data
lines, what you-want to call the variables, how to create new variables from exist-
ing variables, and several other functions we mention later. PROC (short for PRO-
CEDURE) steps indicate what kind of statistical analyses to perform and provide
specifications for those analyses. Let’s look at an example. Consider this simple
data set:

Section B / Computing with SAS Software: An lllustrative Example 3

SUBJECT GENDER HOMEWORK
NUMBER (MorF) EXAM1 EXAM2 GRADE
10 M 80 84 A
7 M 85 89 A
4 F 90 86 B
20 M 82 85 B
25 E 94 94 A
14 F 88 84 C

We have five variables (SUBJECT NUMBER, GENDER, EXAM 1, EXAM 2,
and HOMEWORK GRADE) collected for each of six subjects. The unit of analysis,
people for this example, is called an observation in SAS terminology. SAS software
uses the term “variable” to represent each piece of information we collect for each ob-
servation. Before we can write our SAS program, we need to assign a variable name to
each variable. We do this so that we can distinguish one variable from another when
doing computations or requesting statistics. SAS variable names ‘must conform to a
few simple rules: They must start with a letter, be not more than eight cl}aracters (let-
ters or numerals) in length, and cannot contain blanks or certain special characters
such as commas, semicolons, etc. (The underscore character (_) is a valid character for
SAS variable names and can be used to make variable names more readable.) Therf:-
fore, our column headings of “SUBJECT NUMBER,” or “EXAM 1” are not valid
SAS variable names. Logical SAS variable names for this collection of data would be:

SUBJECT GENDER EXAM1 EXAM2 HWGRADE

It is prudent to pick variable names that help you remember which name goes
with which variable. We could have named our five variables VAR1, VAR2, VAR3,
VAR4, and VARS, but we would then have to remember that VARI stands for
“SUBJECT NUMBER,” and so forth.

To begin, let’s say we are interested only in getting the class means for the two
exams. In reality it’s hardly worth using a computer to add up six number.s, but it
does provide a nice example. In order to do this, we could write the following SAS

program:

DATA TEST; @

.. INPUT SUBJECT 1-2 @
RS 145

DER § 4 EXAM1 6-8 EXAM2 10-12

10°M 807 847A -
7 M .85 89 A
4 F 950 868
20 M 82 B85 B , d
‘25 F-'94 94 A -
F 88 B4 C

’ E "
PROC MEANS DATA=TEST; @
;'RUNi @ . G T st

= o4 S

4q Chapter 1 / A SAS Tutorial

The first four lines make up the DATA step. In this example, the DATA step be-
gins with the word DATA and ends with the word DATALINES. Older versions of
SAS software used the term CARDS instead of DATALINES. Either term is still
valid. (If vou don't know what a computer card is, ask an old person.) Line @ tells
the program that we want to create a SAS data set called TEST. The next two lines
@ show an INPUT statement which gives the program two pieces of information:
what to call the variables and where to find them on the data line. Notice that this
single SAS statement occupies two lines. The SAS system understands this is a single
SAS statement because there is a single semicolon at the end of it. The first variable
is SUBJECT and can be found in columns 1 and 2 of the data line. The second vari-
able is GENDER and can be found in column 4. The dollar sign after GENDER
means that GENDER is a character (alphanumeric) variable, that is, a variable that
can have letters or numbers as data values. (More on this later.) EXAMI is in
columns 6-8, etc. The DATALINES statement () says that the DATA statements are
done and the next thing the program should look for are the data themselves. The
next six lines are the actual data. In this example, we are including the data lines di-
rectly in the program. Later on in this book, we will show you how to read data from
external files.

Great latitude is possible when putting together the data lines. Using a few rules
will make life much simpler for yvou. These are not laws; they are just suggestions.
First, put each new observation on a new line. Having more than one line per obser-
vation is often necessary (and no problem), but don’t put two observations on one
line (at least for now). Second, line up your variables. Don’t put EXAMI1 in columns
6-8 on one line and in columns 9-11 on the next. SAS software can actually handle
some degree of sloppiness here, but sooner or later it’ll cost you. Third, right-justify
your numeric data values. If you have AGE as a variable, record the data as follows:

Correct Problematic
87 87
42 42
9 9
26 26
4 4

Right-justified Left-justified

Again, SAS software doesn’t care whether you right-justify numeric data or not,
but other statistical programs will, and right justification is standard. Fourth, use
character variables sparingly. Take HWGRADE, for example. We have HW-
GRADE recorded as a character value. But we could have recorded it as 04 (0 = F,
1 = D, etc.). As it stands, we cannot compute a mean grade. Had we coded HW-
GRADE numerically, we could get an average grade. Enough on how to code data
for now.

Back to our example. A SAS program knows that the data lines are completed
when it finds a SAS statement or a single semicolon. When you include your data
lines in the program, as in this example, we recommend placing a single semicolon
on the line directly below your last line of data. The next SAS statement @ is a
PROC statement. PROC says “Run a procedure” to the program. We specify which

Section B / Computing with SAS Software: An lllustrative Example 5

procedure right after the word PROC. Here we are running a procedure called
MEANS. Following the procedure name (MEANS), we place the option DATA=
and specify that this procedure should compute statistics on the data set called
TEST. In this example, we could omit the option DATA=TEST, and the procedure
would operate on the most recently created SAS data set, in this case, TEST. We rec-
ommend that you include the DATA= option on every procedure since, in more ad-
vanced SAS programs, you can have procedures that create data sets as well as many
data sets “floating around.” By including the DATA= option, you can always be sure
your procedure is operating on the correct data set.

The MEANS procedure calculates the mean for any variables you specify. The
RUN statement ® is necessary only when SAS programs are run under the Display
Manager. The RUN statement tells SAS that there are no more statements for the
preceding procedure and to go ahead and do the calculations. If we have several
PROC:s in a row, we only need a single RUN statement at the end of the program.
However, as a stylistic standard, we prefer to end every procedure with a RUN
statement and to separate procedures by a blank line to make the programs more
readable.

When this program is executed, it produces something called the SAS LOG and
the SAS OUTPUT. The SAS LOG is an annotated copy of your original program
(without the data listed). It’s a lot like a phone book: Usually it’s pretty boring, but
sometimes you need it. Any SAS error messages will be found there, along with in-
formation about the data set that was created. The SAS LOG for this program is
shown below:

NOTE: Copyright (c) 1989-1995 by SAS Imstitute Inc., Cary, NC, USA.
NOTE: SAS (r) Proprietary Software Release 6.11 TS020

Licensed to RON CODY/ROBERT WOOD JOHNSON MEDICAL SCHOOL, Site XXX.

NOTE: Release 6.11 of the SAS(R) System for Windows(R).

NOTE: AUTOEXEC processing completed.

e WwN R

DATA TEST;
INPUT SUBJECT 1-2 GENDER $ 4 EXAM1 6-8 EXAM2 10-12
HWGRADE § 14;

DATALINES;

NOTE: The data set WORK.TEST has 6 observations and 5 variables.
NOTE: The DATA statement used 0.27 second.

12
i3
14

;
PROC MEANS DATA=TEST;
RUN;

NOTE: The PROCEDURE MEANS used 0.17 second.

T ‘:-----l-lIIIIIIIlIIIIIl-l--!-IllIllII-IllIlI-------------------------lnlll..-lllIll

6 Chapter 1 / A SAS Tutorial

The more important part of the output is found in the OUTPUT window if you
are using the Display Manager. It contains the results of the computations and pro-
cedures requested by our PROC statements. This portion of the output from the
program above is shown next:

Variable N Mean std Dev Minimum Maximum
SUBJECT 6 13.3333333 7.9916623 4.0000000 25.0000000
EXaM1 6 86.5000000 5.2057660 80.0000000 94.0000000
EXAM2 6 87.0000000 3.8987177 84.0000000 94.0000000

If you don't specify which variables you want, SAS software will calculate the
mean and several other statistics for every numeric variable in the data set. Our pro-
gram calculated means for SUBJECT, EXAMI1, and EXAM2. Since SUBJECT is
just an arbitrary ID number assigned to each student, we aren’t really interested in
its mean. We can avoid getting it (and using up extra CPU cycles) by adding a new
statement under PROC MEANS:

PROC MEANS DATA=TEST;
VAR EXAM1 ExaM2; @
RUN;

The indentation used is only a visual aid. The VAR statement ® specifies on
which variables to run PROC MEANS. PROC MEANS not only gives you
means, it gives you the number of observations used to compute the mean, the
standard deviation, the minimum score found, and the maximum score found.
PROC MEANS can compute many other statistics such as variance and standard
error. You can specify just which pieces you want in the PROC MEANS state-
ment. For example:

PROC MEANS DATA=TEST N MEAN STD STDERR MAXDEC=1;
VAR EXAM1 EXAM2;
ROUN;"

will get you only the number of observations with no missing values (N), mean
(MEAN), standard deviation (STD), and standard error (STDERR) for the vari-
ables EXAM1 and EXAM?2. In addition, the statistics will be rounded to one deci-
mal place (because of the MAXDEC=1 option). Chapter 2 describes most of the
commonly requested options used with PROC MEANS.

Section C / Enhancing the Program 7

C. Enhancing the Program

The program as it is currently written provides some useful information but. with a
little more work, we can put some “bells and whistles” on it. The bells and whistles
version below adds the following features: It computes a final grade, which we will
let be the average of the two exam scores; it assigns a letter grade based on that fina]
score; it lists the students in student number order, showing their exam scores. their
final grades and homework grades; it computes the class average for the exams and
final grade and a frequency count for gender and homework grade; finally. it gets
you a cup of coffee and tells you that you are a fine individual.

DATA EXAMPLE; ()
INPUT SUBJECT GENDER § EXAM1 EXaM2 (D

HWGRADE §;
FINAL = (EXAM1 + EXaM2) / 2; ®
IF FINAL GE 0 AND FINAL LT 65 THEN GRADE='F'; @

® ELSE IF FINAL GE 65 AND FINAL LT 75 THEN GRADE='C';
ELSE IF FINAL GE 75 AND FINAL LT 85 THEN GRADE='B';
ELSE IF FINAL GE 85 THEN GRADE='A';

DATALINES;

10 M 80 84 A
T-M.-85: -89 A
4:F--90 86 B

20M 82 85 B

25 F 94 94 A

14 F 88 84 C

7

PROC SORT DATA=EXAMPLE; @
BY SUBJECT;

RUN; ©

PROC PRINT DATA=EXAMPLE;
TITLE 'Roster in Student Number Order';
ID SUBJECT;
VAR EXAM1 EXAM2 FINAL HWGRADE GRADE;
RUN;

PROC MEANS DATA=EXAMPLE N MEAN STD STDERR MAXDEC=1; C)
TITLE 'Descriptive Statistics';
VAR EXAM1 EXAM2 FINAL;

RUN;

PROC FREQ DATA=EXAMPLE; QD
TABLES GENDER HWGRADE GRADE;
RUN;

As before, the first four lines constitute our DATA step. Line @ is an instruction
for the program to create a data set whose data set name is “EXAMPLE.” (Re-
member that data set names follow the same conventions as variable names.) Line
@ is an INPUT statement which is different from the one in the previous example.

8 Chapter 1 / A SAS Tutorial

We could have used the same INPUT statement as in the previous example but
wanted the opportunity to show you another way that SAS programs can read data.
Notice that there are no column numbers following the variable names.

This form of an INPUT statement is called list input. To use this form of
INPUT, the data values must be separated by one or more blanks (or other separa-
tors which computer people call delimiters). If you use one of the other possible de-
limiters. you need to modify the program accordingly (see Chapter 12, Section C).
The order of the variable names in the list corresponds to the order of the values in
the line of data. In this example, the INPUT statement tells the program that the
first variable in each line of data represents SUBJECT values, the next variable is
GENDER. the third EXAMI1, and so forth. If your data conform to this “space-
between-each-variable™ format. then you don't have to specify column numbers for
each variable listed in the INPUT statement. You may want to anyway, but it isn’t
necessary. (You still have to follow character variable names with a dollar sign.) If
you are going to use “list input,” then every variable on your data lines must be
listed. Also, since the order of the data values is used to associate values with vari-
ables, we have to make special provisions for missing values. Suppose that subject
number 10 (the first subject in our example) did not take the first exam. If we listed
the data like this:

10 M 84 A

with the EXAM1 score missing, the 84 would be read as the EXAM1 score, the pro-
gram would read the letter “A” as a value for EXAM2 (which would cause an error
since the program was expecting a number), and, worst of all, the program would
look on the next line for a value of homework grade. You would get an error mes-
sage in the SAS LOG telling you that you had an invalid value for EXAM? and that
SAS went to a new line when the INPUT statement reached past the end of a line.
You wouldn't understand these error messages and might kick your dog.

To hold the place of a missing value when using a list INPUT statement, use a
period to represent the missing value. The period will be interpreted as a missing
value by the program and will keep the order of the data values intact. When we
specify columns as in the first example, we can use blanks as missing values. Using
periods as missing values when we have specified columns in our INPUT statement
is also OK, but not recommended. The correct way to represent this line of data, with
the EXAM1 score missing, is:

10 M . 84 A

Since list input requires one or more blanks between data values, we need at
least one blank before and after the period. We may choose to add extra spaces in
our data to allow the data values to line up in columns.

Line 3 is a statement assigning the average of EXAM1 and EXAM2 to a vari-
able called FINAL. The variable name “FINAL” must conform to the same naming
conventions as the other variable names in the INPUT statement. In this example,
FINAL is calculated by adding together the two exam scores and dividing by 2. No-
tice that we indicate addition with a + sign and division by a / sign. We need the
parentheses because, just the same as in handwritten algebraic expressions, SAS

Section C / Enhancing the Program 9

computations are performed according to a hierarchy. Multiplication and division
are performed before addition and subtraction. Thus, had we written:

FINAL = EXAM1 + EXAM2 / 2;

the FINAL grade would have been the sum of the EXAM1 score and half of
EXAM?2. The use of parentheses tells the program to add the two exam scores first,
and then divide by 2. To indicate multiplication, we use an asterisk (*); to indicate
subtraction, we use a - sign. Exponentiation, which is performed before multiplica-
tion or division, is indicated by two asterisks. As an example, to compute A times the
square of B we write:

X = A * B**2;

The variable FINAL was computed from the values of EXAMI1 and EXAM2.
That does not, in any way, make it different from the variables whose values were
read in from the raw data. When the DATA step is finished, the SAS procedures that
follow will not treat variables such as FINAL any differently from variables such as
EXAM]1 and EXAM?2.

The IF statement @ and the ELSE IF statements &) are logical statements that
are used to compute a letter grade. They are fairly easy to understand. When the con-
dition specified by the IF statement is true, the instructions following the word
THEN are executed. The logical comparison operators used in this example are GE
(greater than or equal to) and LT (less than). So, if a FINAL score is greater than or
equal to 0,and less then 65, a letter grade of ‘F’ is assigned. The ELSE statements are
only executed if a previous IF statement is not true. For example, if a FINAL grade
is 73, the first IF statement & is not true, so the ELSE IF statement @) is tested. Since
this statement is true, a GRADE of ‘C’ is assigned, and all the following ELSE IF
statements are skipped.

Other logical operators and their equivalent symbolic form are shown in the
table below:

Expression Symbel Meaning
EQ = Equal
LT < Less than
LE <= Less than or equal
GT > Greater than
GE > = Greater than or equal
NE A= Not equal
NOT ~ Negation

NortEe: The symbols for NOT and NE may vary,
depending on your system.

The “DATALINES” statement § indicates that the DATA step is complete and
that the following lines contain data. '
Notice that each SAS statement ends with a semicolon. As mentioned before,

the semicolon is the logical end of a SAS statement. We could have written the first
four lines like this: '

10 Chapter 1 / A SAS Tutonial

DATA EXAMPLR; INPUT SUBJECT GENDER §$
EXAM1 EXAM2 HWGRADE $; FINAL = ‘f'
(EXAM1 + EXAM2) / 2;

The program would still run correctly. Using a semicolon as a statement delim-
iter is convenient since we can write long SAS statements on several lines and sim-
ply put a semicolon at the end of the statement. However, if you omit a semicolon
at the end of a SAS statement, the program will attempt to read the next statement
as part of previous statement. causing an error. This may not only cause your pro-
gram to die, it may result in a bizarre error message emanating from the SAS sys-
tem. Omission of one or more semicolons is the most common programming error
for novice SAS programmers. Remember to watch those semicolons! Notice also
that the data lines, since they are not SAS statements, do not end with semicolons.
In fact, under most usual circumstances, data are not allowed to contain semicolons.

Following the DATALINES statement are our data lines. Remember that if you
have data that have been placed in preassigned columns with no spaces between the
data values, you must use the form of the INPUT shown earlier, with column specifi-
cations after each variable name. This form of data is discussed further in Chapter 12.
We have used a RUN statement to end every procedure. Each RUN statement tells
the system that we are finished with a section of the program and to do the compu-
tations just concluded. Remember, when using the Display Manager, only the last
RUN statement is absolutely necessary; the others are really only a matter of pro-
gramming style.

D. SAS Procedures

Immediately following the data is a series of PROCs. They perform various func-
tions and computations on SAS data sets. Since we want a list of subjects and scores
in subject order, we first include a SORT PROCEDURE @), ®, and @. Line @ indi-
cates that we plan to sort our data set; line ® indicates that the sorting will be by
SUBJECT number. Sorting can be multilevel if desired. For example, if we want sep-
arate lists of male and female students in subject number order, we write:

PROC SORT DATA=EXAMPLE;
., BY GENDER SUBJECT;
RUN; T -

-
-

This multilevel sort indicates that we should first sort by GENDER (F’s fol-
lowed by M’s—character variables are sorted alphabetically), then in SUBJECT
order within GENDER.

E——

Section D / SAS Procedures 11

The PRINT procedure @ requests a listing of our data (which is now in
SUBJECT order). The PRINT procedure is used to list the data values in a SAS data
set. We have followed our PROC PRINT statement with three statements that sup-
ply information to the procedure. These are the TITLE, ID, and VAR statements. As
with many SAS procedures, the supplementary statements following a PROC can be
placed in any order. Thus:

PROC PRINT DATA=EXAMPLE;
ID SUBJECT; ’
TITLE 'Roster in Student Number Order';
VAR EXAM1 EXAM2 FINAL HWGRADE GRADE;
RUN;

is equivalent to

PROC PRINT DATA=EXAMPLE;
TITLE 'Roster in Student Number Order';
ID SUBJECT;
VAR EXAM1 EXAM2 FINAL HWGRADE GRADE;
RUN;

SAS programs recognize the keywords TITLE, ID, and VAR and interpret what
follows in the proper context. Notice that each statement ends with its own semi-
colon. The words following TITLE are placed in single (or double) quotes and will
be printed across the top of each of the SAS output pages. The ID variable, SUB-
JECT in this case, will cause the program to print the variable SUBJECT in the first
column of the report, omitting the column labeled OBS (observation number)
which the program will print when an ID variable is absent. The variables following
the keyword VAR indicate which variables, besides the ID variable, we want in our
report. The order of these variables in the list also controls the order in which they
appear in the report.

The MEANS procedure @ is the same as the one we used previously. Finally,
the FREQ procedure @ (you’re right: pronounced “PROC FREAK?”) requests a
frequency count for the variables GENDER, HWGRADE, and GRADE. That is,
what is the number of Males and Females, the number of A’s, B’s, etc., as well as the
percentages of each category. PROC FREQ will compute frequencies for the vari-
ables listed on the TABLES statement. The reason that SAS uses the keyword TA-
BLES instead of VAR for this list of variables is that PROC FREQ can also produce
n-way tables (such as 2 X 3 tables).

Output from the complete program is shown below:

12 Chapter 1 / A SAS Tutorial

Roster in Student Number Order 1
13:15 Wednesday, July 31, 1996

SUBJECT EXAM1 EXAM2 FINAL HWGRADE GRADE
4 90 86 88.0 B A
7 85 89 87.0 A A
10 80 84 82.0 A B
14 88 84 86.0 c A
20 82 85 83.5 B B
25 94 94 94.0 A A
Descriptive Statistics 13:15 Wednesday, July 31, 1996 2
Variable N Mean std Dev std Error
EXAaM1 6 86.5 5.2 2.1
EXAM2 6 87.0 3.9 1.6
FINAL 6 86.8 4.2 1.7
Descriptive Statistics 13:15 Wednesday, July 31, 1996 3
Cumulative Cumulative
GENDER Frequency Percent Frequency Percent
F 3 50.0 3 50.0
M 3 50.0 6 100.0
Cumulative Cumulative
HWGRADE Frequency Percent Frequency Percent
A 3 50.0 3 50.0
B 2 33.3 5 83.3
C 1 16.7 6 100.0
Cumulative Cumulative
GRADE Frequency Percent Prequency Percent
A 4 66.7 4 66.7
B 2 33.3 6 100.0

The first part of the output (the page number is shown at the extreme right of
each page) is the result of the PROC PRINT on the sorted data set. Each column is
labeled with the variable name. Because we used an ID statement with SUBJECT as
the ID variable, the left-most column shows the SUBJECT number instead of the de-
fault OBS column, which would have been printed if we did not have an ID variable.

Page 2 of the output lists each of the variables listed on the VAR statement and
produces the requested statistics (N, mean, standard deviation, and standard error)
all to the tenths place (because of the MACDEX=1 option).

Section F / Syntax of SAS Procedures 13

Page 3 is the result of the PROC FREQ request. Notice that the title “Descrip-
tive Statistics” is still printed at the top of each page. Titles remain in effect until the
end of the current SAS session or if you change it to another title line. This portion
of the listing gives you frequencies (the number of observations with particular val-
ues) as well as percentages. The two columns labeled “Cumulative Frequency” and
“Cumulative Percent” are not really useful in this example. In other cases, where a
variable represents an ordinal quantity, the cumulative statistics may be more useful.

E. Overview of the SAS DATA Step

Let’s spend a moment examining what happens when we execute a SAS program.
This discussion is a bit technical and can be skipped, but an understanding of how
SAS software works will help when you are doing more advanced programming,
When the DATA statement is executed, SAS software allocates a portion of a disk
and names the data set “EXAMPLE,” our choice for a data set name. Before the
INPUT statement is executed, each of the character and numeric variables is as-
signed a missing value. Next, the INPUT statement reads the first line of data and
substitutes the actual data values for the missing values. These data values are not
yet written to our SAS data set EXAMPLE but to a place called the Program Data
Vector (PDV). This is simply a “holding” area where data values are stored before
they are transferred to the SAS data set. The computation of the final grade comes
next (), and the result of this computation is added to the PDV. Depending on the
value of the final grade, a letter grade is assigned by the series of IF and ELSE IF
statements. The DATALINES line triggers the end of the DATA step, and the values
in the PDV are transferred to the SAS data set. The program then returns control
back to the INPUT statement to read the next line of data, compute a final grade,
and write the next observation to the SAS data set. This reading, processing, and
writing cycle continues until no more observations remain. Wasn’t that interesting?

F. Syntax of SAS Procedures

As we have seen above, SAS procedures can have options. Also, procedures often
have statements, like the VAR statement above, which supply information to the
procedure. Finally, statements can also have options. We will show you the general
syntax of SAS procedures and then illustrate it with some examples. The syntax for
all SAS procedures is:

PROC PROCNAME options;
STATEMENTS / statement options;
L
STATEMENTS / statement options;
RUN;

14 Chapter 1 / A SAS Tutorial

First. all procedures start with the word PROC followed by the procedure name.
If there are any procedure options, they are placed, in any order, between the proce-
dure name and the semicolon. separated by spaces. If we refer to a SAS manual. under
PROC MEANS we will see a list of options to be used with the procedure. As men-
tioned, N, MEAN.STD.STDERR. and MAXDEC= are some of the available options.
A valid PROC MEANS request for statistics from a data set called EXAMPLE, with
options for N. MEAN.and MAXDEC would be:

PROC MEANS DATA=EXAMPLE N MEAN MAXDEC=1;
RUN;

Next. most procedures need statements to supply more information about
which type of analysis to perform. An example would be the VAR statement used
with PROC MEANS. Statements follow the procedure, in any order. They each end
with a semicolon. So. to run the PROC MEANS statement above, on the variables

EXAMI1 and EXAM?2. and to supply a title, we would enter:

PROC MEANS DATA=EXAMPLE N MEAN STD MAXDEC=1;
TITLE 'Descriptive Statistics on Exam Scores';

VAR EXAM1 EXAM2;
RUN;

The order of the TITLE and VAR statements can be interchanged with no
change in the results. Finally, some procedure statements also have options. State-
ment options are placed between the statement keyword and the semicolon and sep-
arated from the statement by a slash. To illustrate, we need to choose a procedure
other than PROC MEANS. Let’s use PROC FREQ as an example. As we saw,
PROC FREQ will usually have one or more TABLES statements following it. There
are TABLES options that control which statistics can be placed in a table. For ex-
ample, if we do not want the cumulative statistics printed, the statement option
NOCUM is used. Since this is a statement option, it is placed between the TABLES
statement and the semicolon, separated by a slash. The PROC FREQ request in the
earlier example, modified to remove the cumulative statistics, would be:

%
PROC FREQ DATA=EXAMPLE;

TABLES GENDER HWGRADE GRADE/ NOCUM;
RUN; 3

To demonstrate a procedure with procedure options and statement options,
we use the ORDER= option with PROC FREQ. This useful option controls the
order that the values can be arranged in our frequency table. One option is

Section G / Comment Statements 15

ORDER=FREQ, which enables the frequency table to be arranged in frequency
order, from the highest frequency to the lowest. So, to request frequencies in de-
scending order of frequency and to omit cumulative statistics from the output, we
write our PROC FREQ statements as follows:

PROC FREQ DATA=EXAMPLE ORDER=FREQ;
TABLES GENDER HWGRADE GRADE/ NOCUM;
RUN;

G. Comment Statements

Before concluding this chapter, we introduce one of tle most important SAS
statements—the comment statement. (Yes, we're not kidding!) A properly com-
mented program indicates that a true professional is at work. A comment, inserted
in a program is one or more lines of text that are ignored by the program—they are
there only to help the programmer or researcher when he or she reads the program
at a later date.

There are two ways to insert comments into a SAS program. One is to write a
comment statement. Begin it with an asterisk (*) and end it with a semicolon. There
are many possible styles of comments using this method. For example:

*Program to Compute Reliability Coefficients

Ron Cody

September 18, 1997

Program Name: FRED stored in directory C:\MYDATA

Contact Fred Cohen at 555-4567;

Notice the convenience of this conclusion. Just enter the * and type as many
lines as necessary, ending with the semicolon. Just make sure the comment statement
doesn’t contain a semicolon. Some programmers get fancy and make pretty boxes
for their comments, like this:

Program Name: FRED stored in C:\MYDATA
Purpose: To compute reliability coefficients
Contact: Fred Cohen at 555-4567
Date: September 18, 1997
Programmer: Ron Cody

L RS SEARE AL LR T e s s g e T R TR S el LG S S e SN S AR S * .

1

16 Chapter 1 / ASAS Tutorial

Notice that the entire box is a SAS comment statement since it begins with an
asterisk and ends in a semicolon. Notice also that the box literally cries out, “I need

a life!” S
You may also choose to comment individual lines by resorting to one of the fol-

lowing three ways:

QUES = 6 - QUES; *Transform QUES VAR;
X = LOG(X); *LOG Transform of X;

or

" spransform the QUES Variable;
QUES = 6 - QUES;
*#pake the I.OG of X;
X = LOG(X);
sTrue professonal at work;

or

&
*Pransform the QUES Variable
®a
I
_QUES = 6 - QUES;
*
*Take the LOG of X
. -
r

X = LOG(X);
* R -
‘*Prue professonal at work
ke - SRR -

r

The last example uses more than one asterisk to set off the comment, for visual
effect. Note however, that each group of three lines is a single comment statement
since it begins with an asterisk and ends with a semicolon.

An alternative commenting method begins a comment with a /* and ends with a
*/_This form 6f comment can be embedded within a SAS statement and can include
semicolons within the comment itself. It can occur any place a blank can occur. A
few examples:

/* This is a comment line */

or

Section G / Comment Statements 17

This is a pretty comment box using the slash star
method of commenting. Notice that it begins with
a slash star and ends with a star slash.

or

DATA EXAMPLE; /* The data statement */
INPUT SUBJECT GENDER §
EXAM1 /* EXAM1 is the first exam score */
EXAM2 /* EXAM2 is the second exam score */
HWGRADE §;
FINAL = (EXAM1 + EXAM2)/2; /* Compute a composite grade */
DATALINES;

Let us show you one final, very useful trick using a comment statement, before
concluding this chapter. Suppose you have written a program and run several pro-
cedures. Now, you return to the program and wish to run additional procedures.
You could edit the program, remove the old procedures, and add the new ones. Or,
you could “comment them out” by preceding the section with a /* and ending with
a */, making the entire section a comment. As an example, our commented pro-
gram could look like this:

DATA MYPROG;

INPUT X Y Z;
DATALINES;
1213 -
345

.
I

/**

PROC PRINT DATA=MYPROG;
TITLE 'MY TITLE';
VAR X Y Z;

" RUN;) .
****************i**********************************/
PROC CORR DATA=MYPROG;

VAR X Y Z;

RUN; -

The print procedure is not executed since it is treated as a comment; the corre-
lation procedure will be run. ’

