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Preface

1

Along with conventional problems of statistics and probability, the in-
vestigation of problems occurring in what is now referred to as stochastic
theory of optimal control also started in the 1940s and 1950s. One of the
most advanced aspects of this theory is the theory of optimal stopping
rules, the development of which was considerably stimulated by A. Wald,
whose Sequential Analysis' was published in 1947.

In contrast to the classical methods of mathematical statistics, according
to which the number of observations is fixed in advance, the methods of
sequential analysis are characterized by the fact that the time at which the
observations are terminated (stopping time) is random and is defined by the
observer based on the data observed. A. Wald showed the advantage of
sequential methods in the problem of testing (from independent observa-
tions) two simple hypotheses. He proved that such methods yield on the
average a smaller number of observations than any other method using
fixed sample size (and the same probabilities of wrong decisions). Further-
more, Wald described a specific sequential procedure based on his sequen-
tial probability ratio criterion which proved to be optimal in the class of all
sequential methods.

By the sequential method, as applied to the problem of testing two
simple hypotheses, we mean a rule according to which the time at which
the observations are terminated is prescribed as well as the terminal
decision as to which of the two hypotheses is true. It turns out that the
problem of optimal terminal decision presents no particular difficulties and
that the problem of finding the best sequential procedure can be reduced

'The Russian translation became available in 1960.



Preface

to that of finding the optimal stopping time for a Markov sequence
constructed in a specific fashion (Sections 4.1, 4.2).

The necessity to use sequential methods did not seem very compelling in
the problem of testing two simple hypotheses. However, the two problems
given below require by their very nature, a sequential observation proce-
dure, and associated optimal stopping times.

One such problem is the following optimal selection problem.

We are given n objects ordered in accordance with some common
characteristic. We assume that the objects arrive in a random sequence.
We wish to determine which object is the best one by pairwise comparison.

The problem is to optimize the selection scheme so as to maximize the
probability of choosing the best object. (We assume that we have no access
to the objects rejected.) We show in Section 2.3 that this problem can be
also reduced to that of finding the optimal stopping time for a Markov
chain.

The other problem (the so-called disruption problem: Sections 4.3, 4.4)
is the following.

Let & be a random variable taking on the values 0,1,..., and let the
observations §,£,... be such that for §=n the variables §,,¢,,...,£,_, are
independent and uniformly distributed with a distribution function Fy(x),
and §,¢,,,,... are also independent and uniformly distributed with a
distribution function F,(x)7 Fy(x). (Thus, the probability characteristics
change in the observable process at time #.) The problem is how to decide
by observing the variables &,,£,,... at which instant of time one should
give the “alarm signal” indicating the occurrence of discontinuity or
disruption (in probabilistic terms). But this should be done as to (on the
one hand) avoid a “false alarm,” and (on the other hand) so that the
interval between the “alarm signal” and the discontinuity occurrence
(when the “alarm signal” is given correctly) is minimal. By analogy with
the previous problems, the solution of this problem can be also reduced to
finding the optimal stopping time for some Markov random sequence.

2

The present book deals with the general theory of optimal stopping rules
for Markov processes with discrete and continuous time which enables us
to solve, in particular, the problems mentioned above.

The general scheme of the book is the following.

Let X=(x,,9,,P,), n=0,..., be a Markov chain’ with state space
(E,%). Here x, is the state of the chain at time n, the o-algebra %, is
interpreted as the totality of events observed before time n inclusively, and
P, is the probability distribution corresponding to the initial state x. Let us

assume that if we stop the observations at time n we shall have the gain

2The basic probabilistic concepts are given in Chapter 1.
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‘g(x,). Then the average gain corresponding to the initial state x is the
mathematical expectation M, g(x,).

Next, let 7 be a random variable taking on the values 0, 1,... and such
that the event {r=n} €Y, for each n.

We shall interpret 7 as the instant of time at which the observations are
terminated. Then the condition {r=n}€%, implies that the solution of
the problem whether the observations should be terminated at time n
depends only on the events observed until and including the time n.

We shall consider the gain M, g(x,) corresponding to the stopping time
7 and the initial state x (assuming that the mathematical expectation
M, g(x,) is defined).

Set

s(x)= sup M, g(x,).

The function s(x) is said to be a payoff and the time 7, such that
s(x)< M,g(x,)+e for all xEE is said to be an e-optimal time. The main
questions discussed in this book are: What is the structure of the function
5(x)?; How can this function be determined?; When do the e-optimal and
optimal (i.e., 0-optimal) times coincide?; What is their structure?

Chapter 2 deals with the investigation of these questions for various
classes of the functions g(x) and various classes of the times 7 (taking, in
particular, the value + co, as well) for the case of discrete time.

Here is a typical result of this chapter. Let us assume that the function
g(x) is bounded, | g(x)| < C< o0, x € E. Then we can show that the payoff
s(x) is the smallest excessive majorant of the function g(x), i.e., the
smallest function f(x) satisfying the conditions:

g(x)<f(x),  Tf(x)< f(x),

where Tf(x)=M g(x,).
The time

T.=inf{n>0: s(x,) < g(x,) +¢)
1s e-optimal for any £ >0, and the payoff s(x) satisfies the equation

s(x)=max{ g(x), Ts(x)}.

Chapter 3 deals with the theory of optimal stopping rules for Markov
processes (with continuous time). Most results obtained in this chapter are
similar, at least formally, to the pertinent results related to the case of
discrete time. We should, however, note that rather advanced tools of the
theory of martingales and Markov processes with continuous time have
‘been used in this chapter.

Chapter 1 is of an auxiliary nature. Here, the main concepts of probabil-
ity theory and pertinent material from the theory of martingales and
Markov processes are given and properties of Markov times and stopping
times are detailed. Chapter 4 deals with the applications of the results of

vil
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Chapters 2 and 3 to the solution of the problem of sequential testing of two
simple hypotheses and the problem of disruption for discrete and continu-
ous time.

3

The structure of the present edition is similar to that of 1969; nevertheless,
there is substantial difference in content. Chapter 3, which deals with the
case of continuous time, has been changed significantly to take into
account new and recent results.

Chapter 2 contains some new results as well. Also, simpler proofs are
given for some lemmas and theorems.

Finally, we note that the references given consist mainly of textbooks
and monographs. References to sources of new results as well as supple-
mentary material can be found in the Notes at the end of each chapter.
Each chapter has its own numeration of lemmas, theorems, and formulas;
in referring to the lemmas and theorems within each chapter the chapter
number is omitted.?

To conclude the Preface I wish to express my gratitude to A. N.
Kolmogorov for introducing me to the study of sequential analysis and for
his valuable advice. I am also grateful to B. I. Grigelionis for many useful
discussions pertaining to sequential analysis. I am indebted to G. Yu.
Engelbert and A. Engelbert for many helpful comments and suggestions in
preparing this edition for publication. I would like also to thank N. N.
Moisejev who initiated the writing of this book.

Moscow A. N. SHIRYAYEV
March 1977

3Editor’s Note: The author’s numbering scheme is illustrated by the following examples.
References made in Chapter 2 fo Chapter 2 might take the form Theorem 15, Lemma 15,
Section 15, Subsection 15.5 (i.e., the fifth subsection of Section 15). References made in
Chapter 2 to Chapter 3 might take the form Theorem 3.15, Lemma 3.15, Section 3.15,
Subsection 3.15.5. However, formula numbers begin with the chapter number, whether the
reference is to a formula in the same or to another chapter, so that (2.15) signifies a reference
(in Chapter 2 or in Chapter 3) to the fifteenth formula of Chapter 2. Finally, figures are
numbered sequentially from start to finish of the entire work, whereas: theorems, lemmas,
formulas, and footnotes are numbered sequentially by chapter; definitions are numbered
sequentially by section; and remarks are numbered sequentially by subsection.

viii
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Random processes: Markov times

1.1 Background material from the theory of probability

1.1.1

Let (Q, #) be a measure space, ie., a set Q of points w with a distinguished
system % of its subsets forming a g-algebra.

According to Kolmogorov’s axiomatics the basis for all probability
arguments is a probability space (Q, #, P) where (Q, %) is a measure space
and P is probability measure (probability) defined on sets from % and
having the following properties:

P(A4)>0,Ae7 (nonnegativity);
PQ) =1 (normability);

P(Ul A ,-) == _Zl P(A) (countable or g-additivity);

here A;€ 7,4, " A; = O, i # j, where J is the empty set.

The class of sets #" is said to be the completion of F with respect to
measure P if #* contains the sets 4 = Q when, for Ajand A, e F,4, < 4
S A, and P(4, — A,) = 0. The system of sets #7 is a g-algebra, and the
measure P extends uniquely to #”. A probability space (Q, #, P) is said
to be complete if #* coincides with %.

Let (Q2, #) be a measure space and let # = ("), #" where the intersection
is taken over all probability measures P on (Q, Z). The system Z is a
o-algebra whose sets are said to be absolutely measurable sets in the space
(Q, 7).



1 Random processes: Markov times

Let (Q, #) and (E, #) be two measure spaces. The function & = {(w)
defined on Q and taking on values in E is said to be & /%-measurable if the
set {w:¢&(w) e B} € # for each Be #. In the theory of probability such
functions are known as random elements with values in E. If E = R and #
is the o-algebra of Borel subsets of R, the % /%-measurable functions
¢ = &(w) are said to be random variables. (The % /%-measurable functions
are frequently referred to as % -measurable functions).

1.1.2
If £ = {(w) is a nonnegative random variable, its mathematical expectation
(denoted M¢&) will be, by definition, a Lebesgue integral fn E(w)P(dw).

The expectation M¢ or the Lebesgue integral’ of an arbitrary random
variable ¢ = £(w) can be defined only in the case where one of the expecta-
tions ME* or M&™ is finite (here ¢* = max(&, 0), ¢~ = —min(¢&, 0)), and
then is equal to MEY — ME™.

The random variable ¢ is said to be integrable if

M|&| = MET + ME™ < 0.

The Lebesgue integral |, &(w)P(dw) over a set A € F,denoted by M(&; A)
as well, is, by definition, [q &(w)I 4(w)P(dw) where I, = I ,(w) is the indicator
(characteristic function) of the set A4:

1, weEA,

L) = {0 o ¢ A

Thus, M(¢; A) = M(E1,) and M(&; Q) = ME.

If 4 is a sub-g-algebra of #, and ¢ is a random variable for which M¢
exists (ie, ME" < o0 or ME™ < ), M(¢|%9) denotes the conditional
expectation & with respect to 9, ie., any %-measurable random variable
n = n(w) for which, for any 4 € %,

f Ew)P(do) = f H(w)P(dw). (L)
A A

By virtue of the Radon-Nikodym theorem such a random variable #(w)
exists and can be defined from (1.1) uniquely on sets of P-measure zero.

In the case where &(w) = I 4(w) is the indicator of a set A, the conditional
expectation M(I 4|%) is denoted by P(4|%) and is said to be the conditional
probability of an event A with respect to .

A sequence of random variables &,, n = 1,2, ..., is said to be a sequence
convergent in probability to the random variable ¢ (in this case the notation
&, B Eor & = P-lim ¢, is used) if for each ¢ > 0

lim P{|¢, - ¢ > ¢} = 0.

n—oo

! The Lebesgue integral is frequently denoted by [q &(w)dP(), [q & dP, or | & dP.

2



1.1 Background material from the theory of probability

The sequence of random variables &,, n = 1, 2, ..., is said to be convergent
with probability one, or convergent almost surely, to the random variable ¢
(the notation is &, = £ or &, — & (P-as.)) if the set {w: &, (w) » &)} has
P-measure zero. It is also said that &, — Eonthe set Aif P(A n {&, + &}) = 0.
In this case the notation is £, — & (4; (P-a.s.)).

If {,—»¢(P-as) and ¢, < ¢, (P-as) we shall write &,7¢ or
¢ T & (P-as.). The convergence &, | ¢ can be defined similarly.

1.1.3
We shall give the main theorems on passage to the limit under the sign
of a Lebesgue integral (expectation).

Theorem 1 (Monotone convergence). If &, T & (P-a.s.) and ME] < oo, then

M, T ME. (1.2)
If ¢, | & (P-as.) and ME] < o0, then
M¢, | ME. (1.3)

Theorem 2 (Fatou’s lemma). If &, > n,n=1,2,..., and My > — oo, then?

M lim ¢, < lim M¢,. (1.4)
Ifé, <nn=1,2,...,and My < o0, then
lim M¢&, < M Tim ¢, (1.5)

Theorem 3 (Lebesgue’s theorem on dominated convergence). Let &, B &
and let there exist an integrable random variable n such that |&,| <,
n=1,2,.... Then M|¢| < o0 and

M|, —&l>0,  n- oo (1.6)
Remark 1. Theorems 1-3 still hold if the expectations are replaced by
conditional expectations in the formulations of these theorems.

The following is the generalization of Lebesgue’s theorem on dominated
convergence.

Theoremd. Let &, 5 £, M|&,| < oo,n = 1,2,.... Then M|¢| < o0 and
Mlén_élqoa n— o, (17)
ifand only if the random variables &,,n = 1, 2, ..., are uniformly integrable.?

? We denote by lim &, (or lim inf [ the_lower limit of the sequence &,, n=1,2,....1ie,
sup, inf,, ., &, . Similarly, the upper limit fim &, (or lim sup &,) is inf, sup,, 5, &,..

3 The family of random variables {&,, o« € A} is said to be uniformly integrable if

lim sup f |EldP = 0.
xooo ael Y{|&|> o}



1 Random processes: Markov times

Remark 2 (Generalized Fatou’s lemma). Let &, >1#,, n=1,2,...,
where the variables #,, n = 1,2, ..., are uniformly integrable and 7, 5 7, .
Then (compare with (1.4))

M lim ¢, < lim M¢,.
To prove this we shall note that by virtue of (1.4)

Mh__.mén—an:M(thén_nm)

But by virtue of (1.7) lim M, = M, _, hence M lim ¢, < lim M¢,.

1.14

Let T=1[0,00), T=Tu{w}, N=1{0,1,...}, N= N U {oo}. The family
of % /#-measurable functions (random elements) X = {{,(w)}, te T (t € N),
is said to be a random process with continuous (discrete) time with values in E.
The random process with discrete time is said to be a random sequence as well.

For fixed w € Q the function of time ¢(w), t € T (or t € N) is said to be a
trajectory corresponding to the elementary outcome .

Each random process X = {{(w)}, t € Z (where Z = T in the case of
continuous time and Z = N in the case of discrete time), is naturally
associated with c-algebras #¢ = o{w:¢&;, s < t}, the smallest o-algebras
containing algebras .o/ generated by sets {w: &, e}, s <t, e A.

The random process X = {{(w)}, t € T, is said to be a measurable process
if for any I' € 4 the set

{(w,t): {(w)eT} e F x A(T),

where #(T) is the g-algebra of Borel sets on T = [0, o0).

The measurable random process X = {{(w)}, t€ T, is said to be a
process adapted to the family of c-algebras F = {# },te T, if foreachte T
and ' e #

{w:é(w)eT} eF,.

For short we shall denote these processes by X = (¢, %), te T, or
simply X = (&, #)).

The random process X = (&, #,), t € T, is said to be a progressively
measurable process if foreachte Tand I' € #

{(w, s):E(w)eT,s <t} e F, x B(0, t]),

where Z([0, t]) is the o-algebras of Borel sets on [0, t].

Each progressively measurable process is measurable and adapted. The
converse also holds in a precise sense: if the real* process X = {{(w)},
t € T,ismeasurable and adapted to F = {F },t € T, it permits a progressively

* This is a process with values in R or R.

4



1.2 Markov times

measurable modification® ([ 72], chap. 4, p. 42). Each real adapted process
with right (left) continuous trajectories is a progressively measurable process
([72], chap. 4, p. 43).

1.2 Markov times

1.2.1

In the present section we shall define and discuss the properties of Markov
times, which play a decisive role in the theory of optimal stopping rules. The
discussion will deal only with the case of continuous time. The definitions
and results can be carried almost automatically to the case of discrete time—
in which case as a rule they become simpler.

Let (Q,.#) be a measure space, let T = [0, c0), and let F = {F,},
t € T, be a nondecreasing sequence of sub-g-algebras, i.e., #, = #, < Z for
Lty

Definition 1. The random variable 7 = 7(w) with values in T = [0, 0] is
said to be a Markov time with respect to the system F = {F}, te T.,° if
foreachte T

{o:1(w) <t} e7,.

Markov times can be interpreted as random variables independent of the
“future.”

Definition 2. The Markov time 7 = 7(w) defined in a probability space
(Q, 7, P) is said to be a stopping time or a finite Markov time if

P{t(w) < 0} = 1.

With each Markov time 7 = 7(w) we may associate the aggregate &%,
of the sets A € # for which A N {w:t(w) <t} e F,forallte T It is easy
to verify that & is a o-algebra.

An obvijous interpretation of the g-algebra %, is the following. By %, we
shall understand the totality of events related to some physical process
and observed before time . (For example, let #, = o{w: &, s <t} be a
o-algebra generated by values &, s < ¢, of an observable process X = {E,},
teT). Then # is the totality of events to be observed over the random
time .

* The process X = {&(w)}, te T, is said to be a modification of the process X = {&(w)},
te T,if foreach t € T, P(w: &(w) # E(w)) = O.

® The words “with respect to the system F = {#,), t € T” will be omitted when ambiguity is
impossible.



I Random processes: Markov times

Definition 3. The system of s-algebras FF = {#,}, t € T, is said to be a right
continuous system” if foreacht e T

F = F
F=F s,

where #,, = ( \g»( F,-

Lemma 1. Let © be a Markov time. Then the events {t <t} and {t =t}
belong to #, for eachte T.

Proof follows immediately from the fact that

0

1 1 "

k=1

Lemma 2. Let a family F = {7}, t € T, be right continuous and let 1 = t(w)
be a random variable with values in T = [0, 0] such that {t < t} € F,
for all t € T. Then t is a Markov time, ie., {t <t}e #, teT.

Proor. If {t <t} € #,, then {t <t} € #,,, for each ¢ > 0. Consequently,

t<tte () Frve=Fir = F,.
£>0

The above lemma implies that in the case of right continuous families
F = {#},teT, weneed only to prove that {t < t} € #,,t € T, in order to
verify whether the random variable t is a Markov time.

In general the condition “{t < t} € #,,t € T” is weaker than the con-
dition “{t < t)e #,,t € T.” To convince ourselves that this is the fact we
shall put Q = T. Let # be a o-algebra of Lebesgue sets on T,

0, t < w,
1, t> w,

x(w) = {

and let #, = o{w:x(w), s <t}. Then the random variable t(w) =
inf{t > 0:x(w) = 1} satisfies the condition {tr<1t}e %, whereas
{t<t}¢F,teT O

Remark.Lette N = {0, 1,...} and let T = 7(w) be a random variable with
values in N = {0, 1, ..., co}. Then the condition “{t <n} e #,,ne N” is
equivalent to the condition “{t < n} € #,,ne N.”

Lemma 3. If © and o are Markov times, then © A ¢ = min(t, 6), T Vv 0 =
max(t, g), and © + o are also Markov times.

7 This definition is no longer meaningful in the case of discrete time te N = {0, 1,...}.
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