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The Many-Body Problem



Preface

This book deals with exactly solved models in the many-body physics of one spatial
dimension (1D). One of the first, if not the first many-body problem in all of modern
physics to have found an exact solution, is the magnetic chain solved by Bethe’s Ansatz in
1931. This showed the way to solve dozens of other physical models.

Bethe’s highly detailed paper (in a new English translation) is one of over 80 original and
review papers which are reprinted in their entirety in the present book, as are the 1955
Fermi, Pasta, Ulam report on paradoxical dynamics of anharmonic chains, Lieb and Wu’s
solution of the Hubbard model in 1968, the 1979 discovery of fractional charge in organic
polymers by Su, Schrieffer and Heeger, and a number of other seminal publications in
one-dimensional physics which make up an encyclopedic tour of this special world.

It is, of course, almost impossible to separate out a second dimension. If we analyze the
time-dependence of some model, time provides a second dimension, or if we solve for the
ground state of the anisotropic Heisenberg Hamiltonian in 1D, we are in effect calculating
the ground state of the transfer matrix of some corresponding system in two spatial
dimensions, and thereby the free energy of a two-dimensional model. But there is more,
beneath the surface.

A number of many-body problems in three dimensions can be accurately modeled in
ID. For example, in chapter 4 we mention the problem of the anomalous shape of the
X-Ray absorption threshhold in metals, and the Kondo problem, as important topics
in three-dimensional physics which have been solved by specialized one-dimensional
methods. It is also significant that Lanczos’ method for the reduction of arbitrary
Hermitean matrices to tridiagonal form is functionally equivalent to the reduction of
arbitrary Hamiltonians to one-dimensional chains with on-site and nearest-neighbor
interactions;’ this reduction has been useful in the study of surface normal modes, random
lattices, etc. Thus, while most of the techniques espoused in the various chapters of this
book are peculiarly one-dimensional and apply to polymers or other one-dimensional
systems, yet a significant number of applications are to the wide world of physics.

! See D. C. Mattis, “How to reduce practically any problem to one dimension,” in Physics in One Dimension,
eds. J. Bernasconi and T. Schneider, Springer-Verlag, Berlin, New York, 1981.
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The organization into chapters, and some of the textual material and reprints are taken
from an earlier book, Mathematical Physics in One Dimension, by E. H. Lieb and D. C.
Mattis, Academic Press, New York, 1965, which has been out-of-print and unavailable for
some time. The new book differs from its predecessor in a number of important ways.
Classic discoveries which once had to be omitted owing to lack of space—such as the
unpublished “report” by Fermi, Pasta and Ulam on lack of ergodicity of the linear chain,
or Bethe’s original ansatz paper—can now be incorporated thanks to improved book-
binding technology. Many applications which did not even exist in 1965 (some of which
were in fact spawned by the publication of Lieb & Mattis) can now be included. Among
these, we have surveyed a number of important developments such as:

—classical and quantum theory of the electron plasma,

—the exact solution of the Hubbard model,

—the concept of spinons,

—the Haldane gap in magnetic spin-one chains,

—bosonization and fermionization, and intermediate statistics,

—solitons and the approach to thermodynamic equilibrium,

—the attempts at exact quantum statistical mechanics of interacting particles,
—Ilocalization of normal modes and eigenstates in disordered chains, etc.

The book has been centered about the limited number of exactly soluble mathematical
models of the many-body problem. An annotated Bibliography is arranged with a sense of
historical continuity, and separated into the various topics. It will serve to organize a vast
literature which is not usually repertoried. As such it is intended not just as a guide and
reference to the classic early literature, but also as an indicator of contemporary trends.
Explanatory material in each chapter and a number of didactic review articles on selected
topics (s = 1 chains, solitons, etc.) should help make the reprints accessible to graduate
students and budding professionals in applied mathematics, in theoretical physics, and in
allied fields. The idea is to highlight the main thrusts of original research, situate them
in an historical context, and explain obscure techniques in cases where textbooks are
presently unavailable.

The chapters are organized according to subject matter: Statistical Mechanics, Chains
of Random and/or Anharmonic Oscillators, Electron Energy Bands, The Many-Fermion
and The Many-Boson Problems, Magnetism, and finally, Time-Dependent Phenomena
and Approach to Thermodynamic Equilibrium. But several common topics run from one
chapter to the next: solitons are introduced in chapter 2, but their principal applications
are in chapter 7. The random chain is studied in chapter 2 (lattice vibrations) and chapter
3 (electron energy bands in disordered alloys). Bethe’s ansatz is germane to chapters 4, 5,
and 6, although Bethe’s paper best fits chapter 6 where it appears. “Bosonization” or
“fermionization” are two of several topics overlapping chapters 4 and 6.

The choices of all the topics and papers new since 1965 have been dictated by the
concerns and interests of the present author, who assumes sole responsibility for any and
all errors in interpretation or selection. The original, successful, Lieb and Mattis book
was a tough act to follow. Here, the principal new emphasis is on the many-body problem
as defined by its condensed-matter applications, and despite some overlap, field theory and
pure mathematics are therefore given short shrift. While I have tried to reprint a number
of important discoveries in condensed matter theory, lack of space frequently allowed only
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a few of the subsequent publications based on these seminal works to be reproduced. (The
Bibliography should be useful in tracing the others.)

For example, the reader will find among the reprinted works a new translation of Bethe’s
original paper (the original is in difficult German, oft-quoted but little read!), its applica-
tion to the bose gas by Lieb and Liniger, the extension by Yang and Yang to the bose gas
at finite temperature, and also the exact solution of the one-dimensional Hubbard model
by Lieb and Wu, using Bethe’s method. But we omit the large number of “exact” large U
expansions of the solutions to the Hubbard model which have been published. The latest
of these are listed in the Bibliography, and the reader who consults them will (hopefully!)
find in them references to earlier efforts.

I have incorporated brand new developments, such as “Haldane’s gap” in the energy
spectrum of integer spin antiferromagnets. In this instance because of the fog of contro-
versy still surrounding it, several additional articles which touch on this topic are reprinted
including a masterful review of this field by Affleck.

The successful solutions of the Kondo problem originating with Andrei and indepen-
dently, with Wiegmann (each based on slightly different interpretations of Bethe’s ansatz,
as applied to a one-dimensional reduction of the original three-dimensional problem)
presented a special case. It is a fascinating topic which is nevertheless only briefly touched
upon in chapter 4 because two easily obtainable, recent, lengthy and comprehensive review
articles by Andrei, Wiegmann, and their collaborators, have made inclusion of this topic
in the present volume redundant.

In nonlinear dynamics, I have included the original, unpublished, report by Fermi,
Pasta and Ulam (with invaluable help by their computer programmer, Ms. M. Tsingou)
on the unexpectedly non-ergodic behavior of a chain of anharmonic oscillators. Using the
theory of solitons, it has become possible to resolve their paradox. A review article by
Joseph Ford ties it all together. Toda’s invention of the lattice which bears his name and
its eventual solution by Hénon and Flaschka using the methods of Gardner, Greene,
Kruskal and Miura are all included. Less well known are the other nonlinear dynamical
systems introduced by Calogero and by Sutherland, and their extensions to quantum
mechanics, which we have also reproduced.

New additions to the collection of reprints include studies of short-range order and
electrical conductivity in disordered 1D metals. The Bibliography will also provide new-
comers an entry into some recent trends in this field.

I sincerely hope that a new generation of readers will approve the updated contents and
format and will find this book useful and fun to read.

Daniel C. Mattis
Salt Lake City, Utah
July, 1992
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Note to the Readers

Each chapter is followed by a Bibliography. Works preceded by an asterisk (*) are also
listed in the main Table of Contents, and are reprinted in full following the introductory
material to each chapter.

The detailed Table of Contents, which lists the topics in each chapter and the titles and
authors of the reprinted articles, is designed to take the place of a separate author or
subject index.
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