Differential and Integral Equations and Their Applications

Series Editor: A.D. Polyanin

Mezhlum A. Sumbatyan
Antonio Scalia

EQUATIONS OF
MATHEMATICAL
DIFFRACTION THEORY

ﬁ CHAPMAN & HALL/CRC



EQUATIONS OF
MATHEMATICAL
DIFFRACTION THEORY

Mezhlum A. Sumbatyan
Antonio Scalia

1
o

CHAPMAN & HALL/CRC

CCCCCCCCCCCCCCCC




Library of Congress Cataloging-in-Publication Data

Sumbatyan, Mezhlum A.
Equations of mathematical diffraction theory / Mezhlum A. Sumbatyan, Antonio Scalia.
p. cm.
Includes bibliographical references and index.
ISBN 0-415-30849-6 (alk. paper)
I. Diffraction—Mathematics. 1. Scalia, A. I1. Title.

QC415.595 2004
535.42'0151—dc22 2004051957

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with
permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish
reliable data and information. but the author and the publisher cannot assume responsibility for the validity of all materials
or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior
permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works,
or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation, without intent to infringe.

Visit the CRC Press Web site at www.crcpress.com

© 2005 by CRC Press LLC

No claim to original U.S. Government works
International Standard Book Number 0-415-30849-6
Library of Congress Card Number 2004051957
Printed in the United States of America 1 2 3 4 56 78 9 0
Printed on acid-free paper



EQUATIONS OF
MATHEMATICAL
DIFFRACTION THEORY



PREFACE

The connection between heuristic and strictly formal methods is seemingly one of
the most interesting and debatable questions in modern mathematics. Each of these two
different approaches, whose foundations were laid by Socrates and Aristotle, respectively.
and in the new history are reflected in discussions and written papers by Descartes, Leibnitz
and Bacon, has its own intrinsic merits and restrictions. Moreover, a large number of
discoveries in science were made owing to a combination of strict and heuristic methods
of investigation.

Apparently, one of the brightest examples in modern mathematical physics is diffraction
theory, where the combination of the two approaches would lead so efficiently to such
impressive results. Many important and interesting solutions and even some classical
theories appeared from heuristic ideas, and the most impressive example was given by
Kirchhoff’s physical diffraction theory, which is based upon a clear “light and shadow™
concept for diffracted wave fields. Subsequently, many of these heuristic results were
rigorously substantiated and proved as theorems. On the other hand, unsuccessful attempts
to prove some other heuristic ideas caused significant progress in the development of
formal methods that yielded correct solutions, different sometimes from those prompted
by someone’s intuition.

The above specific features have affected the style of presentation of the book. Each
section deals with a discussion of heuristic ideas, which as a rule are substantiated (or
disproved) with the use of rigorous mathematical methods. Due to limited volume of the
book, at some places we give only a brief sketch of the substantiation, referring the reader
to the original literature for more details.

One more specific feature of the presented material is connected with the rapid progress
in computer technology over the last 20 years, which has significantly changed our view-
point on what could be accepted as efficient methods of investigation. Only recently,
expansion of unknown functions into series in terms of special functions, when a problem
reduced to infinite system of linear algebraic equations with respect to coefficients of the
expansion, was regarded as a standard method. Such a “semi-analytical” approach was
efficient 15-20 years ago, when the evaluation of regularity of the obtained infinite systems
seemed to be very important, since this could guarantee accuracy of a solution by retaining
only few first equations, which was acceptable for first-generations computers. Nowadays,
when there is not much difference between 10 x 10 and 500 x 500 systems even for home
personal computers, such a viewpoint looks archaic, since the time required to convert the
system to a form appropriate for “fast computations™ is much greater than that for “slow
computations” based on modern direct numerical methods like boundary element method
and finite element method. Apparently, it should be agreed that in the cases where direct
numerical techniques provide reliable results in an acceptable computational time. they
should be regarded as most efficient for the problem in question. It is very important to
recognize the cases where one has a priori to reject direct numerical methods. These are
listed below.

1°. Problems where an exact analytical solution or a good approximation to it can be
obtained. Diffraction theory shows many examples of this kind.

2°. Studying dynamic processes with high frequencies. Here, one has to take at least
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10 nodes per wavelength to obtain reliable results by any direct numerical method. As
the wavelength decreases (i.e., the frequency increases) within a given frequency range,
the total number of nodes increases very rapidly, which results in too large algebraic
systems. An impressive example is given by room acoustics. Suppose a sound wave of
frequency [ = 2 kHz, whose wavelength in air is 17 cm, propagates in a 17-m long room.
For reasonable numerical accuracy, one should hence take at least 1000 nodes along the
room length. If the room has a width of 8 m and a height of 5.1 m, one has to consider
1000 x 500 % 300 = 10® finite-element nodes and perform complex-valued arithmetic. This
cannot be implemented even on the most powerful super computers. Here, a reasonable
criterion for acceptability of a numerical approach is its implementability on a PC or similar
computer. So, obtaining solutions to such high-frequency problems in exact formulation
by direct numerical techniques does not seem to be feasible in the visible future.

3°. Studying phenomena of complex qualitative nature. Since direct numerical methods
provide only numbers, which are usually tabulated and plotted, it is often very difficult to
extract such complex qualitative effects from numerous tables and graphs. Instead, it is
preferable to construct an approximate analytical solution, from which qualitative effects
may be extracted explicitly.

4°, Cases where an exact analytical solution has been obtained but its representation is
inapplicable to practice for specific calculations. An example of this kind is considered in
Section 6.1. In such interesting cases, one should look for an alternative approach, which
is often the construction of an approximate solution that would be more appropriate for fast
computations than the exact analytical solution obtained.

The above situations are not widespread but, when met, are very difficult to cope
with efficiently, especially if the researcher does not have sufficient experience in tackling
them. This prompted us to conclude each section with a special subsection titled “Helpful
Remarks.” which may help the reader to build up his or her own less formal conception and
allow the creation of a more complete picture of the issue under consideration.

Note that the application of numerical methods in regular cases is well described in the
classical literature. For this reason, we only consider numerical methods for some irregular
operator problems; see Chapter 9.

To summarize, the main purpose of the present book is to show the close connection
between heuristic and rigorous methods in mathematical diffraction theory. We focus on
differential and integral equations that can easily be utilized in practical applications.

Such an approach is accounted for by the choice of our potential readers. The book
presents clear and elegant methods and is aimed at graduate and post-graduate students, so
that they could quickly examine the state of the art in a specific field of interest. At the
same time, researchers with considerable expertise in dealing with diffraction theory will
hopefully discover that the time of clear explicit solutions in unsolved complex problems
has not passed yet—this is demonstrated by the authors’ original results in Sections 4.5,
4.6, 5.4-5.7, and 6.3-6.6 as well as in many sections of Chapters 7-9. Furthermore, we
hope that an experienced reader will be able to discover for him- or herself new helpful
methods, both analytical and numerical.

The reader will see in what follows that we prefer to rely upon classical results of the
founders of modern science unlike a rather widespread (mistaken) point of view that only
very complicated recent “abstract” theories can provide further progress in contemporary
science. We strongly recommend the younger reader to operate with classical mathematical
theories. and the present book will demonstrate that the fruitful ideas of Hilbert, Cauchy,
Fourier, Abel, Poisson, Weyl, Riemann, Green, Kirchhoff, Rayleigh, Helmholtz, Neumann,
and others can guide the reader very efficiently around present-day problems in diffraction
theory. It should also be stressed that we tried to avoid too formal presentation, since we
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believe that wielding thorough knowledge in any mathematical theory implies applying it
effectively and successfully to practice rather than operating with the formal apparatus of
the theory.

Due to its limited volume, any monograph cannot cover all important questions, and the
present book is no exception. For example, the reader will not find here transient problems
at all. The presentation is confined to boundary problems for elliptic operators only, and
only those with constant coefficients (except Section 3.6). Moreover, the main focus is
on methods that provide solutions without too cumbersome mathematical manipulations.
For example, the reader will not find the structure of the wave field in the “semi-shadow™
zone in diffraction by convex obstacles, and in the method of “edge waves™ in diffraction
from linear segments, the reader will only find the leading high-frequency asymptotic term,
which is constructed by a simple and elegant technique.

The sections, displayed formulas, and figures are enumerated independently within
each chapter with the chapter number in front.

The book is intended for the reader familiar with fundamentals of real, complex-valued.
and functional analysis within a standard course on calculus in the first three years of any
university program of mathematical, physical. or engineering departments.

The style and content of this book have been influenced by the authors” friends. teachers.
and colleagues, Alexander Vatulyan (Rostov State University, Russia), Mauro Fabrizio
(University of Bologna, Italy), and Dorin Iesan (University of lasi, Romania).

The authors are grateful to Alexander Manzhirov and Alexei Zhurov for their helpful
discussions and comments.

The first author is thankful to his wife, Angela Sumbatyan, and to his daughters, Laura,
Carina, and Angelica, who assisted and inspired him in the writing of the book.

M. A. Sumbatyan
A. Scalia
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Chapter 1

Some Preliminaries from Analysis
and the Theory of Wave Processes

1.1. Fourier Transform, Line Integrals of Complex-Valued
Integrands, and Series in Residues

Let a function f(x) be integrable on the real axis: f(r) € L;(-0c,oc). Then its Fourier
transform £'(s) is defined as

F(s) = / f(x)e™® dz, F(s) € L|(-00, ), (1.1)
and in the case when f(x) is continuous, the following inversion formula is valid:
; | - I .. S ;
fx)=— F(s)ye ™ ds=— lim / F(s)e"™ ds, x € (-00,0). (1.2)
27 J 5 2T a—oo J_,

The function f(x) will be called an original and the function F'(s) the Fourier image
of f(x). The fact that the original and the image are related by formulas (1.1) and (1.2)
will be denoted f(xr) = F(s).

Many important and helpful properties of the Fourier transform are well known (e.g..
see Titchmarsh, 1948; Bremermann, 1965). We will use only the following two of them:

1°. Fourier image of the derivative. Let f(r) = F(s)and f""(x) € L,(->c, ~0). then
FU @) == (=is)" F(s). (1.3)

2°. Fourier image of the convolution. Let f(x) € L (-00,00), g(x) € L (o0, o), and
f(x) = F(s), g(x) = G/(s). Then the convolution of f(x) and g(x) is given by

/1(.1'):(fx,(/)(‘1'):/ f©) g(x=)dE € Li(—o00,0¢0), and h(r)=—= F(s)G(s). (1.4)

The first property (1.3) can be obtained by the direct differentiation of Eq. (1.2), and
the second property (1.4) follows from a change of variable when applying the Fourier
transform to Eq. (1.4).

The Fourier transform can also be defined for functions from the Hilbert space L,:
f(x) € Ly(—o0,0). The classical Plancherel theorem asserts the existence of a Fourier
transform F'(s) (Wiener, 1934):

F(s) = / f(x)ye™ ds= lim / F(s)e™ ds, x € (—o0,0). (1.5)

The convergence here is implied in the mean-square sense, i.e., as a convergence in L. In
this case, F(s) € L,(—o0, 00), and the inverse Fourier transform is valid in the same sense,

1 [~ 1 e
f(x) = / F(s)ye ™" ds = - lim / F(s)e ™ ds, x € (-00,0), (1.6)

271 __’R'u~x' ¢

LN



2 SOME PRELIMINARIES FROM ANALYSIS AND THE THEORY OF WAVE PROCESSES

of mean-square convergence. For L, functions f(x),g(x) € L(—0c,0o0) the Parseval
identity states that if f(x) = F(s) and g(x) == G(s), then

o0

C|F(s)P ds,

(1.7)
where the bar over a symbol denotes a complex conjugate. The convolution theorem also
remains valid in L,.

Let (D) denote a set of complex-valued analytic functions f(z) of the complex
variable = = Re(2) + i Im(z) defined over a domain D: f(z) € H(D), z € D. Recall
that this implies that f(z) is analytic and single-valued together with all its derivatives:
["(z) € H(D), ¥Yn =0,1,2,... (see Markushevich, 1963). Then the Cauchy theorem
declares that the value of the line integral

/ f(.r)ﬁ(.z')zl.r:/ F(s)G(s)ds, in particular, / If(.T)|2 (l;r:/

2C J =0C

I(r)= / f(2)dz, za,2g € D, (1.8)

along a curve I' C D of finite length with endpoints z 4, 2 is the same for any I, no matter
how I" connects z 4 and z ;. This is equivalent to the statement that /(1" ) = 0 for any closed
contour I' C D of finite length.

It is clear from the previous consideration that /(I") in Eq. (1.8) is contour dependent
only in the case when f(z) has singular points in . In the present book, we will consider
only poles and branching points out of the whole variety of singular points.

A point z, € D is a pole of the function f(z) if and only if z;isazeroof g(z) = 1/f(2),
1.e., g(zy) = 0. The multiplicity n of the zero z, of g(z) is, at the same time, the multiplicity
of the pole z, of f(z). It can be proved that the leading term in the Laurent series of the
function f(z) in a neighborhood of z is (z — zy) ™", i.e.,

e

@)=Y amz—2)", (1.9)

m=-n

where the coefficient a_; is called the residue of the function f(z) at the pole z, and denoted
a, =Res|[f(2),20]. It n=11in Eq. (1.9), then a_, is the leading coefficient in the Laurent
expansion, and such a pole is called a simple pole. There is quite a simple way to calculate
the residue at a simple pole z:

W) e py = PR (1.10)

Res[f(2), z] =
[f(2), 20l 70 o

which is very efficient with any natural fractional decomposition (as in the case tan z =
sin z/cos z2).

Residues at poles play a key role in the calculation of integrals in the complex plane.
This fact is represented by the Cauchy integral formula valid for any closed contour I' C D
traced counterclockwise

/. f(z)dz = 2mi Z Res[ f(2), 2], (1.11)
J I

m

where the residues are taken at all poles z,,, (of arbitrary multiplicity) inside I".
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This formula is very helpful for the calculation of integrals of the type (1.8). Quite often
[(1") in (1.8) may be easily calculated for a certain simple path /( 1", ) passing through the
endpoints z 4, z5. Then the difference between /(1) and /(. ), is equal to the sum of the
residues at the poles between I" and I',, taken with appropriate sign.

This strategy can be applied to integrals written along infinite lines also. In particular,
let f(z) in the Fourier transform (1.1) be analytic in a finite-width strip |Im(z)| < . Then
the integration contour I = (—o0, 00) may be arbitrarily shifted up or down within this strip.
Indeed, if the integral (1.1) is finite under the integration along the initial path (—>c, o),
this implies that f(z) — 0 as Re(z) — oo. Consequently, the integral of the same integrand
(1.1) along any closed contour (=00, 00)U (00, 0o+ic)U(0o+is, —00+ic)U(—00+is, —ox),
|s] < 0, is zero. Since the two integrals over far finite vertical intervals vanish, because f(>)
decays in a far-zone, this proves our simple statement. In the case when there is a number
of poles between the real axis and the line Im(z) = ¢ parallel to it, it is evident that the
same shift of the contour is possible if we add the residues at these poles. Sometimes this
technique permits explicit calculation of Fourier transforms.

In order to shift the integration contour [' more up (or down), outside of a finite-width
strip, we need to apply the following

LLEMMA (JORDAN). Let i
Ip = / f(z)e** dz, (1.12)
JCy

where f(2) is analytic everywhere in the upper half-plane Im(z) =2 0, except perhaps a finite
number of poles; Re(s) > 0; f(z) — 0as z — oo uniformly over 0 < arg(z) <, and C'y; is
an upper semi-circle of radius R: |z| = R, Im(2) 2 0. Then I, — 0 as R — ~.
The proof of this lemma is simple and can be found in the classical literature.
Corollary. Under the same conditions, the Fourier transform F'(s) of (1.1) can be
explicitly expressed as

F(S)=/ f(x)e** dx = 2mi Z Res[f(2), 2] €. (1.13)

Im(z,,,)>0

This result directly follows from the Cauchy integral formula (1.11) if you apply it to the
function f(2)exp(isz) along the contour I' = (=R, R) U (', with R — ~.

LEMMA (GENERALIZED JORDAN LEMMA). Let f(2) have a countable set of poles z,,,
m=1,2,..., Im(z,,) >0, z, — oo, m — oo, and f(z) vanishes uniformly on semi-
circles Cr, of radius R, as R,, — oo, and each C'y —passes somewhere between =,
and z,,.,. Then for any s such that Re(s) > 0, we have

Iy, = / f()e**dz —0 as m — oc. (1.14)
JCry,

The proof of this less known result repeats the one for the classical Jordan lemma.
Corollary. Under the same conditions, the Fourier transform can be explicitly calculated
as an infinite series:

F(s) = / f@) e do =2miy Res[f(2), zn] ™. (1.15)

o m=1

This corollary is very helpful when f(z) is meromorphic, i.e.. is the ratio of two entire
functions: f(z) = h(z)/g(z). Recall that entire functions are defined as analytic over the
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whole complex plane, so countable sets of zeros and poles of any meromorphic function
f(2) are given by zeros of the entire functions A(z) and g(z), and both the resulting sets are
finite if and only if f(2) is rational.

This is clearly demonstrated by the function f(z) = tanh(z)/z, where A(z) = sinh(z)/z
and g(z) = cosh(z). Itis also clear that in this example the set of upper semi-circles C'y;
m=1,2,...,canbe determined from the condition tanh(:R,,) =0 ~ tan(R,,)=0 ~ R,, =
mm, which causes respective semi-circles to pass through the imaginary points i R,,, = mmi
(see Fig. 1.1).
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Figure 1.1. Alternate poles and zeros of a meromorphic function

Very often we will encounter below, in diffraction problems, some functions of a
complex-valued argument that have branching points and hence are not single-valued. A-
typical representative here is the root square difference

v(z) = V22 - k2, (1.16)

with a certain constant positive parameter & > 0 (see Mittra and Lee, 1971). Usually, in
order to operate with a single-valued function, one has to arrange some cuts that become
boundaries between different branches. For the root square difference (1.16) there are
two branching points: z = k and z = —k, and it is quite natural to make such cuts that
allow operating with the arithmetic value of the root square difference, i.e., the branch with
Re(2) =2 0. This can be provided by the cuts shown in Fig. 1.2, one of which passes totally
in the upper half-plane Im(z) > 0 and the other in the lower half-plane Im(z) < 0. Note that

forreal 2z, v(2) = V22 = k> 2 0if |z] 2 k, and y(2) = =iV k2 - 22 if |2] < k.
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Figure 1.2. Cuts in the complex plane = making the function v(z) = v 22 — k2 single-valued

For example, with such cuts the integral representation of the Hankel function (Abram-
owitz and Stegun, 1965)
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implies integration along the real axis, when the integration path lies between the two cuts.
Note that the singularities s = +k are integrable in the classical sense.

It should be noted that branching functions, like the root square difference (1.16).
generally are not analytic. However, some combinations of such functions can yield analytic
and even entire functions, as can be seen by the example of the function sin[bv(2)]/v(z) (b
is constant). It is certainly an entire function, since it can be represented by a Taylor series,

Sin[[}",(:)] i (:2 . A.Z)m b2m+l
v(2) = 2m+1)!

that is analytic and convergent for all finite 2.

=)™, (1.18)

Helpful remarks

1°. Interestingly, quite often the “shortest way” between two real points “lies” in the
complex plane. To illustrate this, let us consider the following integral over an interval of
the real axis and with real integrands:

> cos(ax
J = / WL“R dx (>0, b>0). (1.19)
0 X2+ b
With the help of the Jordan lemma, we obtain
] OO (,ul.r (].'l' (fiu;' ¢ -ab T
Ji== ——— =7iRes | ——, ib| =Mi—— = =~ e, 1.20)
g / 2+ b? enes {:3 + b’ “} [ o 2h (
where the residue at the simple pole z = ib has been calculated with the method described

above.
2°. The same approach is applicable to a meromorphic function if you use the generalized
Jordan lemma (a,b > 0):

"> tanh(bx) I [~ ... sinh(bx)
Js = ee cos(ax)dr = — e ——— dx
r LA 2 J e x cosh(bx)
DC . » OO - o)
, _ sinh(bz) i 1 gmelm-li2ib
= 1 Res |¢""  ————, — | m——< || =7t — 5
( Z—| { zcosh(bz) b 2 Z_l m(m—1/2)1 (1.21)
e —ma(m-1/2)/b l+e ma/2b
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where, in order to calculate the residues at simple poles, we have put f(2) = /i(2)/g(z) with
entire functions ii(z) = ¢'“* sinh(bz)/z and g(z) = cosh(bz). The following tabulated series
has also been taken into account here (Gradshteyn and Ryzhik, 1994):
— ™ 1 1+
— = —] \ x| < 1). 1.22
Z,'Zm,+l 2 1 -2 (121 ) : )

m=0

3°. Another remarkable phenomenon is related to the question why the Fourier transform,
which (as a rule) converts real-valued functions to complex-valued. is so helpful when
solving real boundary value problems. The answer can be seen from property 1° of the
Fourier transform, since any derivative of an unknown function is converted to the same
image with a factor containing Fourier parameter s. Therefore, if you solve any boundary
value problem in a domain where the Cartesian coordinate x varies from —>c to o, then
the application of the Fourier transform will allow you to reduce the dimension of the
problem by 1. This can reduce ordinary differential equations to algebraic ones, and a
partial differential equation in two variables to an ordinary differential equation.

Property 2° of the Fourier transform allows you to solve integral equations with convo-
lution kernels explicitly. Both techniques will be demonstrated in detail below.
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1.2. Convolution Integral Equations and the Wiener—Hopf
Method

Generally, a convolution integral equation has the following form:

b
ap(x)+ / K(x -8 p&)dE = f(x), a<x<b, (1.23)

which is evidently an equation of the second kind. In the case o = 0 it becomes an equation
of the first kind. The function K(x) is a (known) kernel of the equation, and f(x) is a
(known) right-hand side. The function (x) is unknown and is to be determined from
Eq. (1.23). There is a special, unique case when equation (1.23) generally admits exact
analytical solution. This is the case of b = 0o, where we get the Wiener—Hopf equation. In
this case, a can be made equal to zero by a linear change of variable and only the first-kind
equation (o = 0) will be important to us in this case. The solution of this equation is
based upon some evident properties of the Fourier transform in the complex plane (see
Bremermann, 1965; Mittra and Lee, 1971; Noble, 1958):

19 If | f(e) £ Ae™ ", & — 400, then the function

1«;(s)=/ f(x)e™" du (1.24)
J 0

is analytic in the upper half-plane Im(s) > 7.

200 I | f (o)l € Be™", & — —o0, then the function

0
F(s) = / f(x)e™ dx (1.25)

is analytic in the lower half-plane Im(s) < 7,.

3°. If both properties 1° and 2° are satisfied and 7, > 7, then the full Fourier transform

F(s):/ fr)ye™ dx (1.26)

is analytic in the strip 7 < Im(s) < 7, and the inverse Fourier transform may be calculated
as follows:

27

It is obvious from the previous section that you may arbitrarily deform the infinite
integration contour 1" in (1.27) within the marked strip, if necessary.
Now we are ready to apply the Wiener—Hopf method to the equation

] oo+ T .
flx)= — / F(s)e ™ ds, T <T<LT,. (1.27)

/O.X K(x =& p(&)d§ = f(x), 0<z<oo0. (1.28)
Equation (1.28) is eqL;ivalent to
| KG-0p©dE = @+ f @) il <o, (1.29)
where ”

o(x), x>0, (r), x>0,
pel@) = { Z)/ r<0 )= { (j; <0 51304



