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cooperation during the preperation of the manuscript.
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Exponential and algebraic solutions describing
unsteady rectilinear flows of non-homentropic,
perfect gas

) B. Mayil Vaganan
School of Mathematics, M K University, Madurai-625021
and
J. K. Subashini
Department of Mathematics, K.L.N. College of Engineering, Madurai-625010

Abstract:Equations of motion of a perfect, non-homentropic gas in Lagrangian
form are subjected to the separation of variables and the direct method to obtain
a new exponential solution, besides recovering the algebraic solution of Steketee
(1979,1976,1972).

1. Introduction

The equations of the conservation of mass and the momentum of the un-

steady rectilinear motion of a gas in the Lagrangian coordinates are (Stanyukovich
(1960))

oV du

- = O (1.1)
Ou Op _
E-{-% = 0, (1.2)

where V,u,p,t and h denote the specific volume, the velocity, the pressure, the
time and the Lagrangian coordinate, respectively.

For the non-homentropic gas, the equation of state and the conservation of
energy lead to

pV7" = €5/ = B(h),say. (1.3)
We later show that (1.3) is nothing but the Poisson relation
pV? = e5/% = B(h) = BR"(+D, (1.4)

In (1.3) S stands for the entropy per unit mass of the gas, v = ¢p/cy, a con-
stant and we assume that v > 1. We neglect the effects of viscosity and heat
conduction.

The cartesian coordinate z and the Lagrangian coordinate h are related through

dh = pdz, (1.5)
where p(= 1/V) is the density of the gas.
Equation (1.1) is identically satisfied if we introduce E(h,t) as
u=FE;, and V =Ep. (1.6)

It follows from the very definition of E that E = z.
Inserting (1.3) and (1.6) into (1.2) we obtain the following equation governing
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E(h,t):

Eu + [B(R)E; "|n =0, (1.7)
or
Esyt —YB(R)E; " 'Enn + B'(R)E; " = 0. (1.8)

In general B(h) is not arbitrary as in the case of the flow behind the non-
uniformly travelling shock waves in the wave-interaction problems. Therefore
we seek to identify the forms of B(h) for which the system of equations (1.1)-
(1.3) or (1.7) admits exact solutions.

It is a fact that the sound speed a is given by a®> = yp/p. In a series of
papers Steketee (1979, 1976, 1972) obtained self-similar solution of the system
of equations (1.1)-(1.3) as

V(h,t) = Voh" 1+sgl—" (1.9)
u(h,t) = uoh™"t "+ U, (1.10)
p(h,t) = poh"titEgTloe (1.11)
a(h,t) = agh™trt", (1.12)

where k = 3}/;—;, by writing

V(hvt) = th(n)a p(h7t) = hnz_)(n)y
u(h,t) = ha(n), B(h)= BR™"*",
withn = %,thesimilarityvariable. (1.13)

into (1.1)-(1.3) and solving the resulting system of ordinary differential equa-
tions

V' —na+ni = 0, (1.14)

@ +np—np = 0, (1.15)

V7 —-B = 0. (1.16)

Solution of (1.14)-(1.16) is

174 Von~*, (1.17)

a4 = un v, (1.18)

p = pon ', (1.19)

a aon”". (1.20)

Here we obtain new solution of the system (1.1)-(1.3) or (1.7) besides recovering
the solution (1.9) - (1.12) of Steketee by applying varigated techniques such
as separation of variables (Ames,(1972)), the direct method of Clarkson and
Kruskal (1989).

The rest of the paper is organised as follows. In section 2 we apply the method
of separation of variables to (1.7) with a view to derive its solutions. And the
direct method is employed to (1.7) in section 3. The results and discussions of
the present paper are set forth in section 4.



2. Method of separation of variables

Assume
E(h,t) =T(t)H(h) and B(h)=bh™.

Substituting (2.1) into (1.7) yields
T _ _[BR)H)T)

T I = ), say,
where ) is the constant of proportionality. From (2.2), we have
T = X
[B()(H)T) = -AH.

2.1 B(h) is algebraic.
A solution of (2.3)-(2.4) is

[ AM1+79)? =2
T = (2(1—7)) e,

H(h) = ch o ,
provided that B(h) = bh™ where

=AM (y+m - 1)
S @r+m) A+t

Here c is an arbitrary constant. Therefore B(h) is

y+m-1)

B(h) = (27+m)(1+7)7 i

Hence the solution E(h,t) is

2
E(ht)=c [—2((11”))] ¢t p

(2.1)

(2.2)

(2.3)
(2.4)

(2.9)

Here A c and m are arbitrary constants. Substituting (2.9) into (1.6), (1.3)
and a? = yp/p, we obtain the volume, velocity, pressure and the sound speed:

0 - S22 T
.. S
u(h,t) = 13_07 [———);((llt?;] TR LU,
— il Tﬁ =2 2y4m
p(h,t) = ;(3+2[A(IJIZ); 727] .
Ay(y = 1)(y +m — 1)1} [A(L +74)1-720-D/27 T
a(h,t) = [ E ] [ -
T+ =)
{17 p R

(2.10)

(2.11)

(2.12)

(2.13)



The two solutions, namely, (1.9)-(1.12) of Steketee (1979) and (2.10)-(2.13)
obtained in the presenet work are one and the same if n and m are related
through

n(y+1) =m, and

y+m-—1

Vo = —F5—u,

2 [,\(1+7)2]T*'

© T 1+ 2a-m]
I ek

bo = 27+mu07

w = [20=DO+m-1) *u

9 2(2y +m) 0

2.2 B(h) is exponential.
Writing T'(t) = a1t*?, H(h) = c1e?* and B(h) = bje™" into (2.3)-(2.4), we
find that

T(t) = (%)ﬂ?tﬁ?, (2.14)
H(h) = ce¥, (2.15)

provided that
By s el (1’:—‘7)7_1 (2.16)

Hence the solution of (1.7) in this case is
R A1 +7)? ™ s mih
E(h,t) = I:—zm t+7 exp m‘ s (217)
B(h) = be™h, (2.18)

Here A, c; and m; are free constants. From (2.17), (1.3), (1.6) and a2 = -'133, we
get the volume, velocity, pressure and the sound speed:

u(hyt) = 1237 [H]#tﬁ%e%-%& (2.20)
b = 2D [Az((lltvv))z]#ﬁ%e%’ =20
a(ht) = T2l - DI [H]mtﬁeﬁ%h. (2.22)



The solutions (2.19)-(2.22) when B(h) is given by(2.18) of (1.7) is new.The co-
efficients attached with V,u,p and a are given by the following relations.

_ My
Vo = 5
2c; [A(l"’"}’)z]
Uy = e B
1+ [2(1-9)
- 21
Po = m Uo,
-1 ~
Gy = [M] Yo (2.23)

2.3 B(h) arbitrary.
Case (2.3.1): A =0
When A = 0, the solution of equations (2.3) and (2.4)

T = a1t+b1 (224)
H = ¢ +c / BYdh.. (2.25)

Hence the solution of (1.7) is

E(h,t) = [ast + by] [cl +e / Bl/“’dh] . (2.26)

Case (2.3.2): A= -k%2<0
From (2.3) and (2.4) we have

T = —KT™ (2.27)
[B(h)(H')™"] = KH. (2.28)

Multiplying equation (2.27) by T” and integrating yields

(T')? = (%k;) T $cy, (2.29)

The cases c,; =0 and ¢, # 0 have to be treated seperately.
Case (2.3.2(a)):
If ¢, = 0, then the solution of (3.29) is

k2(y+ 1)2] v+
T=|—1T2L] (7, 2.30
s \2:30)
Case:(2.3.2(b))
If ¢, # 0 and A = —k?, then the integration of (2.29) yields the equation
3A 4A% Q¢ 2\
T30-1) _ 2D m2(y-1y , 447 9 0o 2 _ Y
) T + o3 7 (y=1%*(t+m)?=0, A T (2.31)



The solution of the equation (2.31) when A # 0 is

T = [1 [—108 ( - %(y —1)%(t+m)? - 8a3)

6 Q-7 4
—32k¢ 9, . 2\ 1 —32k6
+12 (g - -y ) (s (g
3 2
—92* (v=1>2(¢+ m)2) + 12a3> + 239—

[—108 (% - %(fy -1t + m)"’) —8a3
+12 (% - %(y - 1)%(t+ m)2)§
+12a3)*]:sl - g] . , (2.32)

where o = =2
Rewriting (2.28), we have

/Ly’ 2 17+1H
_BH+k(H) i,

"
H ¥B vB

(2.33)

To solve equation (2.33) for k # 0, assume H(h) = K(s) where s = s(h).
Therefore equation (2.33) takes the form

/ 2 v-1
h h

To solve equation (2.34), we assume

y
TZ_Z%_?%Z =0, (2.35)
Case(i) : % = A", (2.36)
Case(ii) : % = lpe™mh, (2.37)

Integrating equation (2.35) twice leads to
5= / B3 dh. (2.38)

Case (i):



Now substituting s in equation (2.35) gives

-
B (g) R, (2.39)
Equations (2.38) and (2.39) lead to
k2h1—n

Substituting equation (2.35) and (2.36) together in equation (2.34), it takes the
form

K" +Ih"K(K')™*! = 0. (241)
To solve equation (2.41), assume K = os°. Substituting K in (2.41), we obtain
_ By +l
N RSV CESIR (2.42)
-2 be7
= (-1)=DaFm "
and o (-1) + [(1+7)"”’(n7—7+1)1]
W [ o=l
2 ’ (2.43)
(n Z 1)(7-n’y—l)k2n
Therefore
1 N P
K = (-1)?-—-n°tm[ n-2 ] +’[ ly ]r—n‘(Ts
I+ (ny —y + 1) (n— 1) 0-m-Dg2n
e o
Since H(h) = K(s(h)), we get
H(h) = (-1)=ntm™ n—2 ™ Iy [ceert
(T+N=(ny -y +1)7 (n— 1)O—mr=1g2n
ny— 1
k2. S 1+ —ny—1
=T EELYS )
[lv(l = n>} R (2.45)

Hence the solutions of E(h,t) are
(i) e« =0and A = —k2,

Y =
E(h,t) = (_1)zn—_1ﬂn—,g(7+l)[ k2 (n — 2)y" = ]

2y =D (ny —y+ 1)

B (2.46)
(ii) cu # 0, A = —K2.
— [y er=1 n-2 Th l’y" m
E(h, t) - (‘1) [(1 - 7)1_7("’7 —v+ 1)7] [(n . 1)(1—n'y—l)k2n]

7



[ % ]rn—-"f'r?ﬁ—vrhr,f-— [% [_108(_ﬂ 9c‘(7 1)2(t+m)2_8a3)

ly(1 —n) (2 —1fel
6 3 _291.6
+12 ( q 32’;3 = g2—‘-(7— 1)2(t+m)2) (81 <——( - _3:’)“3 3
1t
—&(7 -1)%(t + m)z) + 1203) ] - %az

_ 6
[—108 ((1_-3:’)6_%3 - %(7 -1)%(t+ m)’) — 84°

6 ]
+12 ((1 321;:sca 9c. o TN 1)2(t+m)2)

(81 (—(1—327,0)_%3 & %(“/ -1)%(t+ m)2)
4 ];‘.Lr

+12a3)i] P

5l (2.47)

Case (ii):
In this case substituting s into equation (2.35) gives
B= (’zz ) e~ Tmh, (2.48)

Hence from equation (2.38)

_k?
niloy

e~™h, (2.49)

Substituting equation(2.35) and(3.37) together in equation (2.34), it takes the
form
K" +lpemhK(K') "+ =0, (2.50)
To solve equation (2.50), assume K = ,5%. Substituting K in (2.50), we
obtain

o7 .
6 = —, 2.51
' T+1 (25%)

_ —ny ()7 A
and o7 = [k2(7+ 1)1_7] : (2.52)
Therefore

— 1-y 1531
K= [kz—(';%] s7HT. (2.53)

Since H(h) = K(s(h)), we get

] (5 (2.54)

nllo“/

8



Hence the solutions of E(h,t) are
i) c. =0 and A = —k?%.

~ 1= () 1-272.27] F4T
E(ht) = —(v+1) [(n1)2(7 (_’Y)l)lo'vk 7]

171 (PR (2.55)
i) cu #£0, A = —k2.

0 = [ L;MJ s

T A ——
+12((1 33;:03 % 1y +m)2)* (81 ((1_32’;:@'5

3} 2
. 6 (v=-1)2%t+ m)2> - 12a3) ] + L

4 3
[ 108((1 _321;:63 9c*( _1)2(t+m)) o3

3
+12(;32—k— gc‘( —1)2(t+m)>

(1—7)e
- 6 Cy
T
+12a3)*];Jl - g] . (2.56)

3. Direct Method

We seek the solution of (1.7) in the form
E(h,t)=p®)f(2), z=2(h,t). (3.1)

We substitute (3.1) in (1.7) and require the resulting equation to be an ordinary
differential equation governing the function f(z) to get

f” + Al(fl)'y+2 + Az(fl)‘H-lf + Asf’ + A4fl(‘7+l)fll =0. (3.2)
The functions A, = Ap(2), n = 1,2,3,4 are introduced according to
201 8 2+ Baw = —YB(R)BZRAL(2), (3.3)
gt = —yB(h)BzaA2(2), (3.4)
B'(h)Bzn — YB(h)Bzrn = —7B(h)BziAs(2), (3.5)
B2t} = —yB(h)BaiA4(2). (36)



Now with the help of only one remark as against the 3 remarks given in the
direct method,we solve equations (3.3)- (3.6) for the functions 3(t), z(h,t) and
Ta(z) =1,2,3,4.

Remark: If z(h,t) is determined from an equation of the form f(z) = 2(h,t),
where f(2) is any invertible function then we may take f(z) = z, without loss
of generality. Setting

MM=—%%, 37)

in (3.5) and integrating with respect to z twice, we get

Ta(a) = [ (B dh (3.8)

In view of the above remark, we choose I'3(z) = z so that A3(z) =0 and

e / (B(h)]? dh. (39)

It is clear from equation (3.9) that z; = 0. Since zz = 0 we deduce from
equations (3.3)-(3.6)that A;(z) = A4(z) = 0. At this point equation (3.4) takes
the form

B18" = — (B“T‘) As(2). (3.10)
We now consider the following two cases:

Case 3.1: B(h) is algebraic.

Assuming B(h) = b2h™2 in (3.9) leads to

= Yy (X pma+m)/y, 3.11
2= 0" (71=) @)
To solve (3.10) we write

FHE = A, (3.12)
and

A2(2) = ag2%, (3.13)

where A,az and a3 are constants. Substituting (3.11)- (3.13) and replacing
B(h) by B(h) = byh™ in (3.9), we obtain

2 —mg
- Moy ma+yY  —mg .
Aqlta) = A(bfy) Zi (m27+“’) = (3.14)

To solve (3.12) assume
B = Bot?. (3.15)
Substituting (3.15) into(3.12) we obtain

1/(1+
AQl +’Y)2} 4 7)t2/(1+7).

B [ 2(1-7)

(3.16)
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