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Preface

The lectures collected in this book were given during a week-long workshop
entitled “Semi-analytic methods for the Navier-Stokes equations”, hosted by the
Centre de Recherche Mathématique in Montréal, as part of their 1995 thematic
year on numerical analysis.

The title of the workshop was chosen to reflect a current reality in fluid dynam-
ics: while a single set of equations (the Navier-Stokes equations or NSE) describe
fluid behavior in a wide range of physical situations, the solutions of these equa-
tions are sufficiently varied and complex that another level of analysis is clearly
needed. The fundamental problem is not just to solve the NSE, but also to un-
derstand what the solutions mean. This requires creating models of the observed
phenomena which are simpler than the NSE, which make use of all the informa-
tion available from numerical and laboratory experiments, and which will lead to a
better understanding of the essential physical processes involved.

This kind of work is being done in a variety of disciplines, and one of the goals
of the workshop was to bring together people working in different fields, but sharing
a common perspective on the nature of the problem to be solved. The participants
included mathematicians, physicists, and engineers, all using a ’semi-analytic’ ap-
proach to the study of the NSE, based on judicious use of numerical simulation in
creating and testing new theoretical ideas. The actual technical methods used are
quite diverse.

One of the fundamental, still problematic phenomena encountered in fluid flow
is the existence of turbulence, or the coexistence of turbulence with ordered flow
features (coherent structures). Strategies for treating turbulence theoretically and
numerically are discussed in the papers of Ching, Meneveau & Lund, and Weiss.
Ching focuses on the construction of model equations describing some statistical
properties of turbulent flows. The goal is to bypass the NSE and come up with
equations describing directly the evolution of probability density functions. Mene-
veau & Lund address the problem of modeling small scales in large eddy simulation
of turbulent flow. In a widely-used class of models, small scale fluctuations are mod-
eled by an eddy-viscosity—a term formally resembling the viscous term in the NSE
with a variable coefficient. This coefficient needs to be calculated dynamically, but,
as the notion of eddy-viscosity is only valid in an average sense, it cannot be com-
puted instantaneously. They propose a Lagrangian time-history averaging, where
the relevant averages are taken over the path of a given fluid parcel.

Weiss gives an overview of a particular approach to modeling two-dimensional
turbulence, based on extensive numerical observations that the flow is dominated
by a system of long-lived, coherent vortices. The conservative evolution of the
vortex system is 'punctuated’ by occasional dissipative events such as mergers.

xiii
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This gives a different definition of a weak perturbation to a Hamiltonian system—
here there is a strong perturbation, but only for short and relatively rare times.
The paper of Marcus & Lee also arises from the study two-dimensional turbulent
flows, complicated by the presence of a spatially varying Coriolis force. Here the
phenomenon of interest is the formation of east-west jets (as observed for example on
Jupiter) and their subsequent dynamics; a great deal can be learned from relatively
simple physical models of the jets.

Another phenomenon observed in fluids and other spatially extended systems
is spatiotemporal chaos, characterized by the existence of slowly varying but disor-
dered patterns. Greenside presents a lucid review of the problem and the theoretical
and numerical questions it poses. One of the fundamental issues is whether, and
how, the existence of spatial order and slow dynamics can be used to simplify the
equations, in the sense of reducing the number of degrees of freedom that need to
be explicitly calculated. This requires an understanding of how certain physical
space characteristics are expressed in the phase space structure of the attractor for
the system. This question is also addressed in the articles of Kirby et al., who
are interested in the problem of finding the coordinates in phase space that allow
a given solution to be represented with maximal efficiency. They describe an ap-
proach based on the Karhunen-Loeve decomposition, which is implemented using
neural networks.

While the technical details involved in numerical and theoretical work on the
NSE can quickly become overwhelming, one of the pleasures of this workshop was
in seeing that there is a common ground, and that the conceptual issues involved
in different problems can be communicated, without too much trouble, across dis-
ciplinary boundaries. I would like to thank all of the participants, and in particular
the authors of this volume, for their contributions to a very stimulating and enjoy-
able conference.

Katie Coughlin
Montréal, January 1999
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Probabilities and Conditional Averages in Turbulence

Emily S. C. Ching

ABSTRACT. In the study of turbulent fluid flows, one of the key issues is to
understand the statistics of the fluctuations of the physical quantities of inter-
est. Specifically, one would like to obtain results for the probability density
function (PDF) which describes the statistics. One might attempt to derive
the PDF’s directly from the equations of motion. However, this is known to
be a very difficult problem and very few explicit results have been obtained
so far. In this paper, we describe a different approach to the problem. We
show that the probability density function can be expressed implicitly as an
exact formula in terms of certain conditional averages. Results for the PDF’s
can then be obtained via the study and understanding of these conditional
averages.

1. Introduction

When fluid flows become turbulent, the physical quantities of interest, such as
the velocity and the temperature fields, exhibit highly irregular fluctuations both in
time and space. It is thus natural to use a statistical approach to study turbulence.
The statistics of any fluctuating quantity are described by its probability density
function (PDF). As a result, a key problem in turbulence research is to derive results
for the PDF’s of the physical quantities of interest. For example, if the PDF’s of
the velocity differences across different separating distances are known, the scaling
of the velocity structure functions, and especially the question of whether there is
any correction to that predicted by Kolmogorov some fifty years ago [11], would
be solved.

When studying the PDF’s of fluctuating turbulent quantities, another inter-
esting aspect is what their shapes are. The statistics of velocity and temperature
derivatives, which are believed to be small-scale characteristics, have been known
to deviate significantly from Gaussian and this is related to the problem of inter-
mittency!, which is a fundamental problem in turbulence. More recent interest

1991 Mathematics Subject Classification. Primary: 76F99; Secondary: 60G99.

The author thanks A. Libchaber, K. R. Sreenivasan and X. Z. Wu for providing her with the
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This work is supported in part by the Hong Kong Research Grant Council, Grant
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2 EMILY S. C. CHING

stems from the discovery that the PDF of temperature fluctuations in turbulent
Rayleigh-Bénard convection changes from Gaussian in the lower Rayleigh-number
regime (known as soft turbulence) to exponential-like in the higher Rayleigh-number
regime (known as hard turbulence) [2,22]. This discovery has prompted various
studies which try to understand the non-Gaussianity of scalar fluctuations in tur-
bulent flows [1,3,4,8-10,17-21].

One might attempt to calculate the PDF’s of the turbulent quantities of interest
directly from the equations of motion, i.e., for example, to calculate the PDF of
velocity fluctuations from the Navier-Stokes equation. However, this task is well-
known to be highly nontrivial. As of today, it has not yet been accomplished
even for the relatively simpler problem of temperature being a passive scalar (not
driving the motion) advected by a random velocity field. Because of the difficulty
in obtaining explicit results, it would be useful to derive implicit results that relate
the PDF’s to other physical quantities especially when the latter could be studied
and understood more easily.

In this paper, we review and discuss the work on obtaining implicit formulas
for the PDF in terms of certain conditional averages. In Section 2, the result for
decaying homogeneous temperature fluctuations, derived by Sinai and Yakhot [19],
is reviewed. Building upon Sinai and Yakhot’s work, results for stationary turbulent
fluctuations have been obtained [4] and are presented in Section 3. Exact results
for fluctuations in general stationary or statistically homogeneous processes have
been derived [5,16] and are reviewed in Section 4. In Section 5, we discuss some
properties of the conditional averages. The paper ends with a summary in Section 6.

2. Decaying Homogeneous Temperature Fluctuations

An implicit formula for the PDF can be derived directly from the equation of
motion for the case of decaying turbulent temperature fluctuations in homogeneous
and incompressible fluid flows. Such a derivation was done by Sinai and Yakhot [19]
and is outlined below. The governing equation is

(2.1) 8T +a-VT = kV>T,

where T'(x,t) and u(x,t) represent respectively the temperature and the velocity
field. Since the flow is incompressible, we have

=¥

(2.2) V -u=0.

For temperature field that is passive, the velocity field is prescribed by the
Navier-Stokes equation. On the other hand, when the temperature field drives the
motion (i.e., being active), for example in Rayleigh Bénard convection, it is coupled
with the velocity field via

(2.3) i+ 1 -Vi=—-Vp+vVii+ gaTz,

where p is the pressure divided by density, Z is the unit vector in the vertical
direction, g is the acceleration due to gravity; and «, v and « are properties of the
fluid, respectively its volume expansion coefficient, kinematic viscosity and thermal
diffusivity. In (2.3), the Boussinesq approximation is used which assumes that any
variation in density with temperature is retained only as a buoyancy term.
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Multiplying (2.1) by 2n7?"~! and taking ensemble average (which is equivalent
to spatial average for homogeneous flows) over the whole system, we have

(2.4) GlT™) = gV (T ~ 2nPn — 1)s{T* 5T}

The term with the velocity field vanishes because of the no slip velocity boundary
condition. Since the temperature field is homogeneous, there cannot be any tem-
perature difference maintained across the system, i.e., there is no forcing on the
boundary and <V2(T2")> = 0. As a result, the temperature fluctuations decay in
time:

(2.5) Ou(T?") = —2n(2n — )r(T*"*|VT|?).

Based on information from numerical experiments, Sinai and Yakhot [19] as-
sumed that the normalized field, X = T/\/(T?), reaches a stationary limit which
implies that

(2.6) G (X0 =),
With (2.6), Sinai and Yakhot [19] obtained
(2.7) (XPM(|VX]?) = (2n — 1)(X* 2| VX]?).

Using this statistical relation, they derived an implicit formula for the PDF of the
normalized temperature fluctuation, namely,
Cn v (VX /
= —— exp 5 ———dx’|,
(VX[ | X = x) o (IVXP|X =1")

28) P(X=z)=

where C'y is a constant fixed by the normalization: [ P(z)dzx = 1.

Equation (2.8) is an implicit result relating the PDF of the normalized fluctu-
ation X to the conditional average (|[VX|* | X = z). The conditional average is
an average of |[VX|? taken only when X is at a given value x and is, in general, a
function of x.

3. Stationary Temperature Fluctuations

As can be seen clearly, the derivation of (2.8) by Sinai and Yakhot is not
directly applicable to the case of Rayleigh Bénard convection when a temperature
difference is maintained, i.e., the system is forced. Less obviously, their analyses
are also inapplicable for stationary passive temperature fluctuations where external
heat is supplied to maintain the fluctuations for measurements.

The present author has assumed [4] that a statistical relation similar to (2.7)
holds for general stationary turbulent temperature fluctuations, namely

(3.1) (X2M)(X?) = (2n — (X2 X3),

where X = (T — (T))/+/{(T — (T))?) is the normalized temperature fluctuation

and an overdot indicates derivative with respect to time. Then following Sinai and
Yakhot, an expression has been obtained [4] for the PDF of X:

(3.2) P(X =z)= <X2|C$x> exp MI % dx'].
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This result has been tested [4] against convective turbulence data [2] and some pas-
sive temperature data measured in the wake of a heated cylinder?. Good agreement
has been found.

This method has been further extended [4] to study the statistics of tempera-
ture differences, T, (z,t) = T'(z,t + 7) — T'(x.t), between two different times sep-
arated by a time interval 7. Similar results to (3.2), with 7" replaced by T, were
obtained for their PDF’s, which were again checked to hold very well for both the
convective and passive temperature data, except for very short time separations.

The good agreement between the experimental data and the implicit formula
(3.2) establishes that the statistical relation (3.1) holds reasonably well for sta-
tionary turbulent temperature fluctuations including both passive and active data.
This unexpected result will be further explored in Section 5.

Moreover, (3.2) implies that the shape of the PDF, especially its tails, is gov-
erned by the functional dependence of <X 2| X = x) on x. Specifically, the
PDF is Gaussian if (X2 | X = z) is independent of z. On the other hand, if
(X? | X = z) ~ |z| then the PDF is nearly exponential. Such a difference in be-
havior of the conditional average (X2 | X = z) has indeed been found [4, 5] which
accounts for the observed change of the PDF from Gaussian to exponential-like
when going from soft turbulence to hard turbulence [2].

4. General Stationary or Statistically Homogeneous Fluctuations

In order to understand the results (2.8) and (3.2) better, we have turned to
study the statistics of general fluctuations [5,16]. General exact results for the
PDF have been obtained and their derivations are shown below.

First consider a stationary process. Let X(¢) be a physical variable measured
as a function of time ¢ at a certain fixed spatial location. For example, X (t) can be
the temperature or a component of the velocity measured in a stationary turbulent
flow. Then the PDF of X, P(X = z), is given formally by?.

(4.1) P(x) = (p(z,t)) where p(z,t) = 6(X(t) — x),
and ensemble average is equivalent to time average in stationary processes.

Differentiating p(x,t) with respect to time, multiplying a general function f(¢)
to the resulting equation, and taking ensemble average gives

(42) (f 12)P() = = [(fX | ) P(@)].

We have used the fact that <8( fp) / 3t> vanishes for stationary processes and that
<p(x,t)F(t)> = <F(t) | x)P(x) for any function F'(t). Equation (4.2), which can
also be derived following the method used in Ref. 19, is valid for any differentiable
function f(t). Solving (4.2) gives a formula for P(z):

Cn = e
4. Pl = o'l ————dx’ |.
A o |<fX|a:>|ep< o (fX|z') ")

Equation (4.3) expresses the PDF of X in terms of two conditional averages, (f X |

x) and (f | z), where f(t) is any general differentiable function such that (fX | z) #
0 for all values of z. Since the same P(x) can be expressed in terms of conditional

2The temperature data were taken at a fixed point downstream of the cylinder on the wake
centerline at a Reynolds number = 5.2 x 10%.
3See, for example, [15]
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averages involving different f’s, the conditional averages for different choices of f
are related to each other [5].

An analogous formula for the PDF in statistically homogeneous processes can
be similarly derived [5]. Suppose X(r) is now a physical variable measured as a
function of position r at a certain time in a statistically homogeneous fluid flow.
The PDF of X is found to be

. © (v.gle)
(4.4) P(X‘x)‘|<g-vxm>|e"p(/o <g-VX|x'>d””)’

for any differentiable function g(r).

We emphasize that the two results (4.3) and (4.4) are exact and that their
derivations assume only stationarity or statistical homogeneity and differentiability
with respect to time or space. It is interesting to consider some special cases.
Taking f = X and g = VY respectively gives

@ -l ()
(4.5) P(m)=.¢4”exp< / —<—).(|—I>~dm’>,
(X2 | =) o (X2|a)
which was first derived in Ref. 16 and
. Cn (/1 (V2X | z') ,)
4.6 Pl et ¥ = 1%/ prY
s @) = vxETs ™\, vXE|)

which is the exact analog [5,21] to (4.5) and has been obtained independently by
several others [12].

5. Conditional Averages

In Sections 2 to 4, we have shown various results for the PDF of fluctuations
in different circumstances. All of these implicit formulas relate the PDF of the
quantity of interest to some conditional averages of either its time or spatial deriva-
tives. Hence, understanding the PDF amounts to understanding these conditional
averages.

It turns out that these conditional averages could be studied or understood
more easily. For instance, for the decaying homogeneous temperature fluctuations,
the conditional average (V2X | X = z) is a simple function of z:

(5.1) (V’X | X =z) = —(|VX[|*)z.

This can be seen by comparing (4.6) with (2.8). We note again that in the derivation
of (2.8), stationarity of the normalized temperature fluctuation is assumed. Thus,
it would be worthwhile to directly test (5.1) using data from numerical simulations.
Moreover, under other circumstances, the conditional average (|[VX|* | X = z)
can be evaluated directly from the equations of motion [6].

On the other hand, comparing the exact result (4.5) for a general stationary
fluctuation with the result (3.2) obtained for stationary turbulent temperature fluc-
tuations and temperature differences, we find the following interesting feature:

(X|X=2)
(X2)

for the stationary turbulent temperature data. Equation (5.2) has been verified

directly using both the convective and the wake temperature data. This linearity of

r(x) has also been found to hold approximately for spanwise vorticity data taken in
several different turbulent shear flows [13]. The existence of such simple and general

(5.2) r(z) =
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statistical feature in turbulence, a complicated phenomenon, is quite surprising?.
It is exciting at the same time since a general feature is likely to be understood
more easily than a complicated one.

We now show that (5.2) follows directly from (3.1). Because of stationarity,
the ensemble average of any total time derivative vanishes. As a result, (3.1) can
be written as

(5.3) (X2 (X?) = (X2 1X).

Expressing (5.3) in terms of integrals involving P(z), we have
(5.4) (%2 /x2”P(X = x)dr = — /(X | X = )™ 'P(X = z) dz.

The fact that (5.4) holds for all n implies
(5.5) X%z =—(X| X =a),

which is exactly (5.2). Hence, to understand (5.2), we have to understand (5.3).
We are in the process of understanding (5.3) for temperature differences between
two different spatial locations from fundamental physical principles [7].

6. Summary

Implicit formulas in terms of conditional averages have been obtained for the
PDF of fluctuating physical variables in both stationary and statistically homo-
geneous turbulent fluid flows. These conditional averages could be found exactly
from the equations of motion in certain circumstances. Moreover, one of the con-
ditional averages, (X | X = z), is found to have simple features that hold generally
for various fluctuations X in different turbulent flows. Hence, it is expected that
physical insights and understanding of the statistics of the fluctuations would be
gained through the study of the conditional averages. Work along these lines is in
progress and will be reported elsewhere.
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