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Preface

Since the publication of the first edition of my book Nonlinear Fiber Optics in 1989,
this field has virtually exploded. During the 1990s, a major factor behind such a sus-
tained growth was the advent of fiber amplifiers and lasers, made by doping silica
fibers with rare-earth materials such as erbium and ytterbium. Erbium-doped fiber
amplifiers revolutionized the design of fiber-optic communication systems, including
those making use of optical solitons, whose very existence stems from the presence of
nonlinear effects in optical fibers. Optical amplifiers permit propagation of lightwave
signals over thousands of kilometers as they can compensate for all losses encountered
by the signal in the optical domain. At the same time, fiber amplifiers enable the use of
massive wavelength-division multiplexing, a technique that by 1999 led to the devel-
opment of lightwave systems with capacities exceeding 1 Tb/s. Nonlinear fiber optics
plays an important role in the design of such high-capacity lightwave systems. In fact,
an understanding of various nonlinear effects occurring inside optical fibers is almost
a prerequisite for a lightwave-system designer.

Starting around 2000, a new development occurred in the field of nonlinear fiber
optics that changed the focus of research and led to a number of advances and novel
applications in recent years. Several kinds of new fibers, classified as highly nonlinear
fibers, have been developed. They are referred to with names such as microstructured
fibers, holey fibers, or photonic crystal fibers, and share the common property that a
relatively narrow core is surrounded by a cladding containing a large number of air
holes. The nonlinear effects are enhanced dramatically in such fibers. In fact, with a
proper design of microstructured fibers, some nonlinear effects can be observed even
when the fiber is only a few centimeters long. The dispersive properties of such fibers
also are quite different compared with those of conventional fibers, developed mainly
for telecommunication applications. Because of these changes, microstructured fibers
exhibit a variety of novel nonlinear effects that are finding application in the fields as
diverse as optical coherence tomography and high-precision frequency metrology.

The fourth edition of Nonlinear Fiber Optics, published in 2007, has been updated
to include recent developments related to the advent of highly nonlinear fibers. How-
ever, it deals mostly with the fundamental aspects of this exciting field. Since 2001,
the applications of nonlinear fiber optics have been covered in a companion book that
also required updating. This second edition of Applications of Nonlinear Fiber Optics
fills this need. It has been expanded considerably to include the new research material
published over the last seven years or so. It retains most of the material that appeared
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in the first edition.

The first three chapters deal with three important fiber-optic components—fiber-
based gratings, couplers, and interferometers—that serve as the building blocks of
lightwave technology. In view of the enormous impact of rare-earth-doped fibers, am-
plifiers and lasers made by using such fibers are covered in Chapters 4 and 5. Chapter 6
deals with the pulse-compression techniques. Chapters 7 and 8 has been revised ex-
tensively to make room for the new material. The former is devoted to fiber-optic
communication systems, but Chapter 8 now focuses on the ultrafast signal processing
techniques that make use of nonlinear phenomena in optical fibers. Last two chap-
ters, Chapters 9 and 10, are entirely new. Chapter 9 focuses on the applications of
highly nonlinear fibers in areas ranging from wavelength laser tuning and nonlinear
spectroscopy to biomedical imaging and frequency metrology. Chapter 10 is devoted
to the applications of nonlinear fiber optics in the emerging technologies that make
use of quantum-mechanical effects. Examples of such technologies include quantum
cryptography, quantum computing, and quantum communications.

This volume should serve well the needs of the scientific community interested
in such diverse fields as ultrafast phenomena, high-power fiber amplifiers and lasers,
optical communications, ultrafast signal processing, and quantum information. The
potential readership is likely to consist of senior undergraduate students, graduate stu-
dents enrolled in the M.S. and Ph.D. programs, engineers and technicians involved
with the telecommunication and laser industry, and scientists working in the fields of
optical communications and quantum information. Some universities may opt to offer
a high-level graduate course devoted solely to nonlinear fiber optics. The problems
provided at the end of each chapter should be useful to instructors of such a course.

Many individuals have contributed to the completion of this book either directly
or indirectly. I am thankful to all of them, especially to my students, whose curiosity
led to several improvements. Some of my colleagues also helped me in preparing this
book. I thank Prof. J. H. Eberly, Prof. A. N. Pinto, and Dr. S. Lukishova for reading
the chapter on quantum applications and making helpful suggestions. I am grateful to
many readers for their feedback. Last, but not least, I thank my wife, Anne, and my
daughters, Sipra, Caroline, and Claire, for understanding why I needed to spend many
weekends on the book instead of spending time with them.

Govind P. Agrawal

Rochester, NY
December 2007
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Chapter 1

Fiber Gratings

Silica fibers can change their optical properties permanently when they are exposed to
intense radiation from a laser operating in the blue or ultraviolet spectral region. This
photosensitive effect can be used to induce periodic changes in the refractive index
along the fiber length, resulting in the formation of an intracore Bragg grating. Fiber
gratings can be designed to operate over a wide range of wavelengths extending from
the ultraviolet to the infrared region. The wavelength region near 1.5 um is of par-
ticular interest because of its relevance to fiber-optic communication systems. In this
chapter on fiber gratings, the emphasis is on the role of the nonlinear effects. Sections
1.1 and 1.2 discuss the physical mechanism responsible for photosensitivity and vari-
ous techniques used to make fiber gratings. The coupled-mode theory is described in
Section 1.3, where the concept of the photonic bandgap is also introduced. Section
1.4 is devoted to the nonlinear effects occurring under continuous-wave (CW) con-
ditions. The phenomenon of modulation instability is discussed in Section 1.5. The
focus of Section 1.6 is on propagation of optical pulses through a fiber grating with
emphasis on optical solitons. The phenomenon of nonlinear switching is also covered
in this section. Section 1.7 is devoted to related fiber-based periodic structures such
as long-period, chirped, sampled, transient, and dynamic gratings together with their
applications.

1.1 Basic Concepts

Diffraction gratings constitute a standard optical component and are used routinely
in various optical instruments such as a spectrometer. The underlying principle was
discovered more than 200 years ago [1]. From a practical standpoint, a diffraction
grating is defined as any optical element capable of imposing a periodic variation in the
amplitude or phase of light incident on it. Clearly, an optical medium whose refractive
index varies periodically acts as a grating since it imposes a periodic variation of phase
when light propagates through it. Such gratings are called index gratings.

1



2 Chapter 1. Fiber Gratings

Figure 1.1: A fiber grating. Dark and light shaded regions within the fiber core show periodic
variations of the refractive index.

1.1.1 Bragg Diffraction

The diffraction theory of gratings shows that when light is incident at an angle 6;
(measured with respect to the planes of constant refractive index), it is diffracted at an
angle 6, such that [1]

sin 6; —sin 6, = mA /(AA), (1.1.1)

where A is the grating period, A /7 is the wavelength of light inside the medium with
an average refractive index 7, and m is the order of Bragg diffraction. This condition
can be thought of as a phase-matching condition, similar to that occurring in the case
of Brillouin scattering or four-wave mixing [2] and can be written as

ki — kg = mkg, (1.1.2)

where k; and k, are the wave vectors associated with the incident and diffracted light.
The grating wave vector k, has magnitude 27t/A and points in the direction in which
the refractive index of the medium is changing in a periodic manner.

In the case of single-mode fibers, all three vectors lie along the fiber axis. As a re-
sult, k; = —k; and the diffracted light propagates backward. Thus, as shown schemat-
ically in Figure 1.1, a fiber grating acts as a reflector for a specific wavelength of light
for which the phase-matching condition is satisfied. In terms of the angles appearing
inEq. (1.1.1), 6, = /2 and 6, = —x /2. If m = 1, the period of the grating is related to
the vacuum wavelength as A = 2AA. This condition is known as the Bragg condition,
and gratings satisfying it are referred to as Bragg gratings. Physically, the Bragg con-
dition ensures that weak reflections occurring throughout the grating add up in phase
to produce a strong reflection at the input end. For a fiber grating reflecting light in the
wavelength region near 1.5 pm, the grating period A ~ 0.5 pum.

Bragg gratings inside optical fibers were first formed in 1978 by irradiating a
germanium-doped silica fiber for a few minutes with an intense argon-ion laser beam [3].
The grating period was fixed by the argon-ion laser wavelength, and the grating re-
flected light only within a narrow region around that wavelength. It was realized that
the 4% reflection occurring at the two fiber—air interfaces created a standing-wave pat-
tern such that more of the laser light was absorbed in the bright regions. As a result, the
glass structure changed in such a way that the refractive index increased permanently
in the bright regions. Although this phenomenon attracted some attention during the
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next 10 years [4]-[16], it was not until 1989 that fiber gratings became a topic of in-
tense investigation, fueled partly by the observation of second-harmonic generation
in photosensitive fibers. The impetus for this resurgence of interest was provided by
a 1989 paper in which a side-exposed holographic technique was used to make fiber
gratings with controllable period [17].

Because of its relevance to fiber-optic communication systems, the holographic
technique was quickly adopted to produce fiber gratings in the wavelength region near
1.55 pum [18]. Considerable work was done during the early 1990s to understand the
physical mechanism behind photosensitivity of fibers and to develop techniques that
were capable of making large changes in the refractive index [19]-[47]. By 1995, fiber
gratings were available commercially, and by 1997 they became a standard component
of lightwave technology. Soon after, several books devoted entirely to fiber gratings
appeared, focusing on applications related to fiber sensors and fiber-optic communica-
tion systems [48]-[50].

1.1.2 Photosensitivity

There is considerable evidence that the photosensitivity of optical fibers is due to defect
formation inside the core of Ge-doped silica (SiO;) fibers [29]-[31]. In practice, the
core of a silica fiber is often doped with germania (GeO») to increase its refractive
index and introduce an index step at the core-cladding interface. The Ge concentration
is typically 3-5% but may exceed 15% in some cases.

The presence of Ge atoms in the fiber core leads to formation of oxygen-deficient
bonds (such as Si—-Ge, Si-Si, and Ge-Ge bonds), which act as defects in the silica
matrix [48]. The most common defect is the GeO defect. It forms a defect band
with an energy gap of about 5 eV (energy required to break the bond). Single-photon
absorption of 244-nm radiation from an excimer laser (or two-photon absorption of
488-nm light from an argon-ion laser) breaks these defect bonds and creates GeE’
centers. Extra electrons associated with GeE' centers are free to move within the glass
matrix until they are trapped at hole-defect sites to form the color centers known as
Ge(1) and Ge(2). Such modifications in the glass structure change the absorption
spectrum a(w). However, changes in the absorption also affect the refractive index
since A and An are related through the Kramers—Kronig relation [51]:

n € [CAa(w)do

An(a))—n_ oo (1.1.3)
Even though absorption modifications occur mainly in the ultraviolet region, the re-
fractive index can change even in the visible or infrared region. Moreover, as index
changes occur only in the regions of fiber core where the ultraviolet light is absorbed, a
periodic intensity pattern is transformed into an index grating. Typically, index change
An is ~107* in the 1.3- to 1.6-um wavelength range but can exceed 0.001 in fibers

with high Ge concentration [34].
The presence of GeO defects is crucial for photosensitivity to occur in optical
fibers. However, standard telecommunication fibers rarely have more than 3% of
Ge atoms in their core, resulting in relatively small index changes. The use of other
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dopants, such as phosphorus, boron, and aluminum, can enhance the photosensitiv-
ity (and the amount of index change) to some extent, but these dopants also tend to
increase fiber losses. It was discovered in the early 1990s that the amount of index
change induced by ultraviolet absorption can be enhanced by two orders of magni-
tude (An > 0.01) by soaking the fiber in hydrogen gas at high pressures (200 atm)
and room temperature [39]. The density of Ge-Si oxygen-deficient bonds increases
in hydrogen-soaked fibers because hydrogen can recombine with oxygen atoms. Once
hydrogenated, the fiber needs to be stored at low temperature to maintain its photo-
sensitivity. However, gratings made in such fibers remain intact over relatively long
periods of time, if they are stabilized using a suitable annealing technique [52]-[56].
Hydrogen soaking is commonly used for making fiber gratings.

Because of the stability issue associated with hydrogen soaking, a technique, known
as ultraviolet (UV) hypersensitization, has been employed in recent years [571-[59].
An alternative method, known as OH flooding, is also used for this purpose. In this ap-
proach [60], the hydrogen-soaked fiber is heated rapidly to a temperature near 1000°C
before it is exposed to UV radiation. The resulting out-gassing of hydrogen creates
a flood of OH ions and leads to a considerable increase in the fiber photosensitiv-
ity. A comparative study of different techniques revealed that the UV-induced index
changes were indeed more stable in the hypersensitized and OH-flooded fibers [61]. It
should be stressed that understanding of the exact physical mechanism behind photo-
sensitivity is far from complete, and more than one mechanism may be involved [57].
Localized heating can also affect the formation of a grating. For instance, damage
tracks were seen in fibers with a strong grating (index change >0.001) when the grat-
ing was examined under an optical microscope [34]; these tracks were due to localized
heating to several thousand degrees of the core region, where ultraviolet light was most
strongly absorbed. At such high temperatures the local structure of amorphous silica
can change considerably because of melting.

1.2 Fabrication Techniques

Fiber gratings can be made by using several techniques, each having its own merits
[48]-[50]. This section discusses briefly four major techniques, used commonly for
making fiber gratings: the single-beam internal technique, the dual-beam holographic
technique, the phase-mask technique, and the point-by-point fabrication technique.
The use of ultrashort optical pulses for grating fabrication is covered in the last sub-
section.

1.2.1 Single-Beam Internal Technique

In this technique, used in the original 1978 experiment [3], a single laser beam, often
obtained from an argon-ion laser operating in a single mode near 488 nm, is launched
into a germanium-doped silica fiber. The light reflected from the near end of the fiber
is then monitored. The reflectivity is initially about 4%, as expected for a fiber—air
interface. However, it gradually begins to increase with time and can exceed 90% after
a few minutes when the Bragg grating is completely formed [5]. Figure 1.2 shows



