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1

Introduction: materials challenges in
fuel cells

M GASIK, Helsinki University of Technology, Finland

1.1 What is a fuel cell?

A fuel cell is an electrochemical device that converts the chemical energy of
a reaction (between fuel and oxidant) directly into electrical energy. The
basic physical structure, or building block, of a fuel cell consists of an
electrolyte layer in contact with a porous anode and cathode on either side
[1]. In a typical fuel cell, gaseous fuels are fed continuously to the anode
(negative electrode) and an oxidant (i.e. oxygen from air) is fed continuously
to the cathode (positive electrode); the electrochemical reactions take place
at the electrodes to produce an electric current. A fuel cell should not be
confused with secondary batteries (accumulators). The battery (primary) is
an energy storage device. The maximum energy available is determined by
the amount of chemical reactant stored within the battery itself. The battery
will cease to produce electrical energy when the chemical reactants are
consumed (i.e. discharged). In a secondary battery, the reactants are regenerated
by recharging, which involves putting energy into the battery from an external
(electricity) source. The fuel cell, on the other hand, is an energy conversion
device that theoretically has the capability of producing electrical energy for
as long as fuel and oxidant are supplied to the electrodes [1, 2].

The history of the fuel cell principle dates back to 1839, when Sir William
Grove made his famous invention [3, 4]. That fuel cell was in fact the earliest
version of a lead-acid accumulator, but it employed platinum electrodes with
sulphuric acid electrolyte. Platinum here was seemingly working as both a
catalyst and a current collector. However, Grove did consider a fuel cell not
as a primary source of power but rather a method “effecting the decomposition
of water by means of its composition” [3]. Initially, fuel cells were seen as
an attractive means for the generation of power because the efficiencies of
other technologies were very poor. For instance, the coal-burning generation
station built by T. Edison in Manhattan in 1882 converted only about 2.5%
of the available energy into electricity. W. Ostwald has written in his visionary
paper about the wastefulness of steam engines already in 1894 and expressed

1



2 Materials for fuel cells

his hope that the next century would become the “Age of Electrochemical
Combustion” [5]. Still in the 1920s the overall thermodynamic efficiency of
reciprocating steam engines was approximately 13—14%, and steam turbines
obtained just under 20%. These poor thermal efficiencies provided one of
the major motivations for the pioneers of fuel cell development [4]. Because
of the role of coal as the major fuel at the beginning of the 20th century, the
emphasis was put on coal-derived fuels first. One of the pioneering works
was done by L. Mond (founder of INCO) and C. Langer to develop a coal
gasification process producing a hydrogen-rich gas [4, 6]. At that time, however,
sulphur and other impurities in the gas resulted in fast poisoning of platinum
catalysts and thus high costs of the fuel cells’ energy. As the efficiency of
other technologies rapidly improved, the interest in fuel cells waned. Only
when the *“‘space race” began in the late 1950s were fuel cells rapidly developed
for deployment in space [2, 4].

1.2 Why fuel cells?

Today (and likely still tomorrow) increased energy and power generation
demand is being met largely by reserves of fossil fuel that emit both greenhouse
gases and other pollutants. Those reserves are diminishing and they will
become increasingly expensive [7]. Currently, the level of CO, emissions
per capita for developing nations is 20% of that for the major industrial
nations. As developing nations industrialise, this will increase substantially.
By 2030, CO, emissions from developing nations could account for more
than half the world’s CO, emissions. These emissions, however, could be
substantially reduced, even if hydrogen is derived from fossil fuels, due to
the much higher efficiency of fuel cells [2].

The efficiency of a fuel cell (besides absence of moving parts, noise and
less emissions) has been the most attractive feature since their invention —
unlike a heat engine, the fuel cell does not need to achieve the large temperature
differential to achieve the same Carnot cycle efficiency as the heat engine.
This is because of the added energy gained from Gibbs free energy as opposed
to simply the thermal energy — the theoretical efficiency limit for a fuel cell
is thus simply AG°/AH® = 1 — T - AS°/AH®. For hydrogen oxidation into
water this value is about 80-90% depending on temperature and pressure.
The resulting freedom from large temperature differentials in the fuel cell
provides a great benefit because it relaxes material temperature problems
when trying to achieve comparable efficiency [1].

1.3 Which fuel cell?

A variety of different fuel cell types exist classified by use of diverse categories,
depending on the combination of type of fuel and oxidant, whether the fuel
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is processed outside (external reforming) or inside (internal reforming) the
fuel cell, the type of electrolyte, the temperature of operation, whether the
reactants are fed to the cell by internal or external manifolds, etc. [1].
Theoretically, any substance capable of chemical oxidation that can be supplied
continuously (as a fluid) can be “burned galvanically” as fuel at the anode of
a fuel cell. Similarly, the oxidant can be any fluid that can be reduced at a
sufficient rate. Gaseous hydrogen has become the fuel of choice for most
applications, because of its high reactivity when suitable catalysts are used,
its ability to be produced from hydrocarbons for terrestrial applications, and
its high energy density when stored cryogenically for closed environment
applications, such as in space. Similarly, the most common oxidant is gaseous
oxygen, which is readily and economically available from air for terrestrial
applications, and again easily stored in a closed environment [1]. The most
common classification of fuel cells is by the type of electrolyte used. It
includes:

1. polymer electrolyte fuel cell (PEFC), also known as proton exchange
membrane (PEM) fuel cell

alkaline fuel cell (AFC)

phosphoric acid fuel cell (PAFC)

molten carbonate fuel cell (MCFC), and

solid oxide fuel cell (SOFC) [1, 2].

O D

PEM fuel cells may also use methanol as a fuel so these fuel cells are often
called also “direct methanol fuel cells” (DMFC). “Direct” means that fuel
(methanol in this case) is not being externally reformed in any way, but
rather oxidised directly. It is clear that the operating temperature, and useful
life and power density of a fuel cell dictate the physicochemical,
thermomechanical and other properties of materials used in the components
(i.e., electrodes, electrolyte, interconnect, current collector, etc.).

14 Fuel cells and materials challenges

Fuel cells thus are demonstrating excellent efficiency, high reliability and
low emissions. Why are they not yet in our everyday use? Since their invention,
fuel cell deployment has been hindered by several major technical factors:
high costs of basic elements and materials, uncertain long-term stability of
the components, sensitivity to different poisons present in fuels (SO,, CO,
H,S, NaCl, etc.). Independently of fuel cell types, costs have been the major
drawback, raising the fuel cell electricity costs far beyond “conventional”
electricity prices despite higher efficiency values. More efficient membranes,
electrodes, and catalysts are continually being developed. It is becoming
clear that the success of fuel cells will be mainly based on the ability of
industry to offer cheaper and better materials: catalysts without noble metals,
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new carbon materials, novel electrolytes and membranes, reliable interconnect
materials, etc.

Materials challenges for fuel cells are very demanding. In this book only
some of the examples will be shown to demonstrate the multifunctionality of
the fuel cells environment and the multi-science approach one should use to
find proper solutions. Different fuel cell types present different demands for
materials combinations and their working conditions. Different applications
employ additional constraints. For instance, for fuel cell electrical vehicles
(FCEV) current limitations for extreme operating conditions are based on
the properties of the materials used in current FCEV prototypes. Increasing
the power of a fuel cell stack thus corresponds linearly to increased use of
materials like, for example, platinum in the catalyst and weight and volume
of the stack. Catalysts are one of the key materials in fuel cells in respect of
both performance and costs. It is known that the best catalytic activity in fuel
cells reactions is provided by noble metals like platinum, palladium, etc.
Unfortunately, extensive use of noble metals is cost-prohibitive — if one
considers the US car fleet shifting towards fuel cell vehicles, worldwide
platinum and palladium recovery should be increased by at least for 48% at
current price levels. It is unlikely that substantial noble metal mining would
increase so, and a significant (a few times) price reduction would be expected.
Thus, fuel cells must employ alternative catalysts with less noble metals [1,
8—11]. Car manufacturers have noted that strategies have to be developed to
increase the specific power density of fuel cells stacks with minimum loss in
cell efficiency. New catalysts, oxidant enrichment technologies and catalytic
activity increasing are the major directions.

As authors [9] point out, it is of note, that materials presently being used
in PEMFC and SOFC are essentially the same as those that were suggested
in the 1980s. Despite innovative fabrication processes and materials tailoring,
only in the last few years have engineering and commercialisation issues
highlighted the inadequacies of originally chosen materials [9].

15 Structure of the book

Fuel cells have already been proven to have excellent efficiency versus other
means of power generation. The major obstacles seen during the last few
years concern cost, long-term durability and service issues. For any material,
performance, manufacturing and applications are essential issues. Today,
more than ever, the global community can see that the predictions of Jules
Verne may finally come to reality. He wrote: “I believe that water will one
day be employed as fuel, that hydrogen and oxygen which constitute it, used
singly or together, will furnish an inexhaustible source of heat and light, of
an intensity of which coal is not capable” (“The Mysterious Island”, 1874).
To take a small step towards this vision, the authors of this book have made



