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INTERMEDIATE DYNAMICS FOR ENGINEERS

This book has sufficient material for two full-length semester courses
in intermediate engineering dynamics. For the first course a Newton—
Euler approach is used, followed by a Lagrangian approach in the sec-
ond. Using some ideas from differential geometry, the equivalence of
these two approaches is illuminated throughout the text. In addition,
this book contains comprehensive treatments of the kinematics and dy-
namics of particles and rigid bodies. The subject matter is illuminated
by numerous highly structured examples and exercises featuring a wide
range of applications and numerical simulations.

Oliver M. O’Reilly is a professor of mechanical engineering at the
University of California, Berkeley. His research interests lie in contin-
uum mechanics and nonlinear dynamics, specifically in the dynamics
of rigid bodies and particles, Cosserat and directed continuua, dynam-
ics of rods, history of mechanics, and vehicle dynamics. O’Reilly is the
author of more than 50 archival publications and Engineering Dynam-
ics: A Primer. He is also the recipient of the University of California
at Berkeley’s Distinguished Teaching Award and three departmental
teaching awards.
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Preface

The writing of this book started more than a decade ago when I was first given
the assignment of teaching two courses on rigid body dynamics. One of these
courses featured Lagrange’s equations of motion, and the other featured the
Newton-Euler equations. I had long struggled to resolve these two approaches to
formulating the equations of motion of mechanical systems. Luckily, at this time,
one of my colleagues, Jim Casey, was examining the elegant works [205, 207, 208]
of Synge and his co-workers on this topic. There, he found a partial resolution to
the equivalence of the Lagrangian and Newton-Euler approaches. He then went
further and showed how the governing equations for a rigid body formulated by use
of both approaches were equivalent [27, 28]. Shades of this result could be seen in
an earlier work by Greenwood [79], but Casey’s work established the equivalence
in an unequivocal fashion. As is evident from this book, I subsequently adapted
and expanded on Casey’s treatment in my courses. My treatment of dynamics
presented in this book is also heavily influenced by the texts of Papastavridis [169]
and Rosenberg [182]. It has also benefited from my graduate studies in dynamical
systems at Cornell in the late 1980s. There, under the guidance of Philip Holmes,
Frank Moon, Richard Rand, and Andy Ruina, I was shown how the equations
governing the motion of (often simple) mechanical systems featuring particles and
rigid bodies could display surprisingly rich behavior.

There are several manners in which this book differs from a traditional text on
engineering dynamics. First, I demonstrate explicitly how the equations of motion
obtained by using Lagrange’s equations and the Newton—Euler equations are equiv-
alent. To achieve this, my discussion of geometry and curvilinear coordinates is far
more detailed than is normally found in textbooks at this level. The second differ-
ence is that I use tensors extensively when discussing the rotation of a rigid body.
Here, I am following related developments in continuum mechanics, and I believe
that this enables a far clearer derivation of many of the fundamental results in the
kinematics of rigid bodies.

I'have distributed as many examples as possible throughout this book and have
attempted to cite up-to-date references to them and related systems as far as fea-
sible. However, I have not approached the exhaustive treatments by Papastavridis
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[169] nor its classical counterpart by Routh [184, 185]. I hope that sufficient citations
to these and several other wonderful texts on dynamics have been placed through-
out the text so that the interested reader has ample opportunity to explore this re-
warding subject.

Using This Text

This book has been written so that it provides sufficient material for two full-length
semester courses in engineering dynamics. As such it contains two tracks (which
overlap in places). For the first course, in which a Newton—Euler approach is used,
the following chapters can be covered:

1. Kinematics of a Particle (Section 1.5 can be omitted)
2. Kinetics of a Particle

Appendix on Tensors

Rotation Tensors

Kinematics of Rigid Bodies

Constraints on and Potentials for Rigid Bodies
Kinetics of a Rigid Body

11. Multibody Systems

© 90 N o

The second course, in which a Lagrangian approach is used, could be based on the
following chapters:

Kinematics of a Particle

Kinetics of a Particle

Lagrange’s Equations of Motion for a Single Particle
Lagrange’s Equations of Motion for a System of Particles

@ s W

Dynamics of Systems of Particles

Appendix on Tensors

Rotation Tensors (with particular emphasis on Section 6.8)
Kinematics of Rigid Bodies

Constraints on and Potentials for Rigid Bodies

Kinetics of a Rigid Body

10. Lagrange’s Equations of Motion for a Single Rigid Body
11. Multibody Systems

e e )

In discussing rotations for the second course, time constraints permit a detailed
discussion of only the Euler angle parameterization of a rotation tensor from
Chapter 6 and a brief mention of the examples on rigid body dynamics discussed in
Chapter 9.

Most of the exercises at the end of each chapter are highly structured and are
intended as a self-study aid. As I don’t intend to publish or distribute a solutions
manual, I have tailored the problems to provide answers that can be validated.
Some of the exercises feature numerical simulations that can be performed with
MartLAB or MATHEMATICA. Completing these exercises is invaluable both in terms of
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comprehending why obtaining a set of differential equations for a system is
important and for visualizing the behavior of the system predicted by the model.
I also strongly recommend semester projects for the students during which they
can delve into a specific problem, such as the dynamics of a wobblestone, the flight
of a Frisbee, or the reorientation of a dual-spin satellite, in considerable detail.
In my courses, these projects feature simulations and animations and are usually
performed by students working in pairs who start working together after 7 weeks
of a 15-week semester.

Image Credit

The portrait of William R. Hamilton in Figure 4.6 in Subsection 4.11.3 is from the
Royal Irish Academy in Dublin, Ireland. I am grateful to Pauric Dempsey, the Head
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Acknowledgments

This book is based on my class notes and exercises for two courses on dynamics,
ME170, ENGINEERING MECHANICs III, and ME175, INTERMEDIATE DYNaMIcs, which
I have taught at the Department of Mechanical Engineering at the University of
California at Berkeley over the past decade. Some of the aims of these courses are
to give senior undergraduate and first-year graduate students in mechanical engi-
neering requisite skills in the area of dynamics of rigid bodies. The book is also
intended to be a sequel to my book Engineering Dynamics: A Primer, which was
published by Springer-Verlag in 2001.

I have been blessed with the insights and questions of many remarkable students
and the help of several dedicated teaching assistants. Space precludes mention of all
of these students and assistants, but it is nice to have the opportunity to acknowl-
edge some of them here: Joshua P. Coaplen, Nur Adila Faruk Senan, David Gulick,
Moneer Helu, Eva Kanso, Patch Kessler, Nathan Kinkaid, Todd Lauderdale, Henry
Lopez, David Moody, Tom Nordenholz, Jeun Jye Ong, Sebastién Payen, Brian
Spears, Philip J. Stephanou, Meng How Tan, Peter C. Varadi, and Stéphane Ver-
guet. I am also grateful to Chet Vignes for his careful reading of an earlier draft of
the book.

Many other scholars helped me with specific aspects of and topics in this book.
Figure 9.1 was composed by Patch Kessler. Henry Lopez (B.E. 2006) helped me with
the roller-coaster model and simulations of its equations of motion. Professor Chris
Hall of Virginia Tech pointed out reference [118] on Lagrange’s solution of a satel-
lite dynamics problem. Professor Richard Montgomery of the University of Califor-
nia at Santa Cruz discussed the remarkable figure-eight solutions to the three-body
problem with me, Professor Glen Niebur of the University of Notre Dame provided
valuable references on Codman’s paradox, Professor Harold Soodak of the City
College of New York provided valuable comments on the tippe top, and Profes-
sors Donald Greenwood and John Papastavridis carefully read a penultimate draft

xiii



Xiv

Preface

of this book and generously provided many constructive comments and corrections
for which I am most grateful.

Most of this book was written during the past 10 years at the University of Cali-
fornia at Berkeley. The remarkable library of this institution has been an invaluable
resource in my quest to distill more than 300 years of work on the subject matter in
this book. I am most grateful to the library staff for their assistance and the taxpay-
ers for their support of the University of California.

Throughout this book, several references to my own research on rigid body
dynamics can be found. In addition to the students mentioned earlier, I have had
the good fortune to work with Jim Casey and Arun Srinivasa on several aspects of
the equations of motion for rigid bodies. The numerous citations to their works are
a reflection of my gratitude to them.

This book would not have been published without the help and encouragement
of Peter Gordon at Cambridge University Press and would contain far more er-
rors were it not for the editorial help of Victoria Danahy. Despite the assistance of
several other proofreaders, it is unavoidable that some typographical and technical
errors have crept into this book, and they are my unpleasant responsibility alone. If
you find some on your journey through these pages, I would be pleased if you could
bring them to my attention.



Contents

Preface

PART ONE DYNAMICS OF A SINGLE PARTICLE

1 Kinematics of a Particle. . ........ T R
1.1 Introduction
1.2 Reference Frames
1.3 Kinematics of a Particle
1.4 Frequently Used Coordinate Systems
1.5 Curvilinear Coordinates
1.6 Representations of Particle Kinematics
1.7 Constraints
1.8 Classification of Constraints
1.9 Closing Comments
Exercises
2 Kinetics of a Particle . . . ...... 5 B E S @ m eee
2.1 Introduction
2.2 The Balance Law for a Single Particle
2.3  Work and Power
2.4 Conservative Forces
2.5 Examples of Conservative Forces
2.6  Constraint Forces
2.7 Conservations
2.8  Dynamics of a Particle in a Gravitational Field
2.9 Dynamics of a Particle on a Spinning Cone
2.10 A Shocking Constraint
2.11 A Simple Model for a Roller Coaster
2.12 Closing Comments

Exercises

page xi

O N L W W W

14
15
20
27
27

33
33
35
36
37
39
45
47
55
59
60
64
66

vii



viii

3 Lagrange’s Equations of Motion for a Single Particle

3.1
3.2
33
34
35
3.6
3.7
3.8
39

Introduction

Lagrange’s Equations of Motion

Equations of Motion for an Unconstrained Particle
Lagrange’s Equations in the Presence of Constraints
A Particle Moving on a Sphere

Some Elements of Geometry and Particle Kinematics
The Geometry of Lagrange’s Equations of Motion

A Particle Moving on a Helix

Summary

Exercises

PARTTWO DYNAMICS OF A SYSTEM OF PARTICLES

4 The Equations of Motion for a System of Particles

4.1 Introduction
4.2 A System of N Particles
4.3 Coordinates
4.4  Constraints and Constraint Forces
4.5 Conservative Forces and Potential Energies
4.6 Lagrange’s Equations of Motion
4.7  Construction and Use of a Single Representative Particle
4.8 The Lagrangian
4.9 A Constrained System of Particles
4.10 A Canonical Form of Lagrange’s Equations
4.11 Alternative Principles of Mechanics
4.12 Closing Remarks
Exercises
5 Dynamics of Systems of Particles. . . .............
5.1 Introduction
5.2 Harmonic Oscillators
5.3 A Dumbbell Satellite
5.4 A Pendulum and a Cart
5.5 Two Particles Tethered by an Inextensible String
5.6 Closing Comments

Exercises

PART THREE DYNAMICS OF A SINGLE RIGID BODY

6 RotationTensors . ............ s m s w e
6.1 Introduction
6.2 The Simplest Rotation
6.3 Proper-Orthogonal Tensors
6.4  Derivatives of a Proper-Orthogonal Tensor

Contents

70
71
73
74
78
80
83
87
91
92



Contents

6.5 Euler’s Representation of a Rotation Tensor 171
6.6 Euler’s Theorem: Rotation Tensors and Proper-Orthogonal
Tensors 176
6.7 Relative Angular Velocity Vectors 178
6.8 Euler Angles 181
6.9 Further Representations of a Rotation Tensor 191
6.10 Derivatives of Scalar Functions of Rotation Tensors 195
Exercises 198
7 Kinematics of Rigid Bodies . . . ... .. W R e e e e oo 206
7.1 Introduction 206
7.2 The Motion of a Rigid Body 206
7.3 The Angular Velocity and Angular Acceleration Vectors 211
7.4 A Corotational Basis 212
7.5 Three Distinct Axes of Rotation 213
7.6  The Center of Mass and Linear Momentum 215
7.7 Angular Momenta 218
7.8 Euler Tensors and Inertia Tensors 219
7.9 Angular Momentum and an Inertia Tensor 223
7.10 Kinetic Energy 224
7.11 Concluding Remarks 226
Exercises 226
8 Constraints on and Potentials for Rigid Bodies . . . . ........... 237
8.1 Introduction 237
8.2 Constraints 237
8.3 A Canonical Function 241
8.4 Integrability Criteria 243
8.5 Forces and Moments Acting on a Rigid Body 247
8.6  Constraint Forces and Constraint Moments 248
8.7 Potential Energies and Conservative Forces and Moments 256
8.8 Concluding Comments 262
Exercises 263
9 KineticsofaRigidBody........................ oo 272
9.1 Introduction 272
9.2 Balance Laws for a Rigid Body 272
9.3 Work and Energy Conservation 274
9.4  Additional Forms of the Balance of Angular Momentum 276
9.5 Moment-Free Motion of a Rigid Body 279
9.6 The Baseball and the Football 285
9.7 Motion of a Rigid Body with a Fixed Point 289
9.8 Motions of Rolling Spheres and Sliding Spheres 294
9.9 Closing Comments 297

Exercises 299



10 Lagrange’s Equations of Motion for a Single Rigid Body .

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
10.9

Introduction

Configuration Manifold of an Unconstrained Rigid Body
Lagrange’s Equations of Motion: A First Form

A Satellite Problem

Lagrange’s Equations of Motion: A Second Form
Lagrange’s Equations of Motion: Approach II

Rolling Disks and Sliding Disks

Lagrange and Poisson Tops

Closing Comments

Exercises

PART FOUR SYSTEMS OF RIGID BODIES

11 Introduction to Multibody Systems . . . .

11.1
11.2
11.3
11.4
11.5

APPENDIX: BACKGROUND ON TENSORS

Al
A2
A3
A4
AS
A6
A7
A8
A9

Introduction

Balance Laws and Lagrange’s Equations of Motion
Two Pin-Jointed Rigid Bodies

A Single-Axis Rate Gyroscope

Closing Comments

Exercises

Introduction

Preliminaries: Bases, Alternators, and Kronecker Deltas
The Tensor Product of Two Vectors

Second-Order Tensors

A Representation Theorem for Second-Order Tensors
Functions of Second-Order Tensors

Third-Order Tensors

Special Types of Second-Order Tensors

Derivatives of Tensors

Exercises

Bibliography

Index

Contents

307
308
311
315
318
324
325
331
336
336

345

. 347

347
347
349
351
355
355

362

362
362
363
364
364
367
370
372
373
374

377
389
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DYNAMICS OF A SINGLE PARTICLE






n Kinematics of a Particle

1.1 Introduction

One of the main goals of this book is to enable the reader to take a physical sys-
tem, model it by using particles or rigid bodies, and then interpret the results of the
model. For this to happen, the reader needs to be equipped with an array of tools
and techniques, the cornerstone of which is to be able to precisely formulate the
kinematics of a particle. Without this foundation in place, the future conclusions on
which they are based either do not hold up or lack conviction.

Much of the material presented in this chapter will be repeatedly used through-
out the book. We start the chapter with a discussion of coordinate systems for a
particle moving in a three-dimensional space. This naturally leads us to a discussion
of curvilinear coordinate systems. These systems encompass all of the familiar co-
ordinate systems, and the material presented is useful in many other contexts. At
the conclusion of our discussion of coordinate systems and its application to particle
mechanics, you should be able to establish expressions for gradient and acceleration
vectors in any coordinate system.

The other major topics of this chapter pertain to constraints on the motion of
particles. In earlier dynamics courses, these topics are intimately related to judi-
cious choices of coordinate systems to solve particle problems. For such problems,
a constraint was usually imposed on the position vector of a particle. Here, we also
discuss time-varying constraints on the velocity vector of the particle. Along with
curvilinear coordinates, the topic of constraints is one most readers will not have
seen before and for many they will hopefully constitute an interesting thread that
winds its way through this book.

1.2 Reference Frames

To describe the kinematics of particles and rigid bodies, we presume on the ex-
istence of a space with a set of three mutually perpendicular axes that meet at a
common point P. The set of axes and the point P constitute a reference frame. In
Newtonian mechanics, we also assume the existence of an inertial reference frame.
In this frame, the point P moves at a constant speed.



4 Kinematics of a Particle

Path of the particle

Figure 1.1. The path of a particle moving in E*. The position
vector, velocity vector, and areal velocity vector of this particle
at time ¢ and the position vector of the particle at time ¢ + At
are shown.

Depending on the application, it is often convenient to idealize the inertial
reference frame. For example, for ballistics problems, the Earth’s rotation and
the translation of its center are ignored and one assumes that a point, say E,
on the Earth’s surface can be considered as fixed. The point E, along with three
orthonormal vectors that are fixed to it (and the Earth), is then taken to approximate
an inertial reference frame. This approximate inertial reference frame, however,
is insufficient if we wish to explain the behavior of Foucault’s famous pendulum
experiment. In this experiment from 1851, Léon Foucault (1819-1868) ingeniously
demonstrated the rotation of the Earth by using the motion of a pendulum.* To
explain this experiment, it is sufficient to assume the existence of an inertial frame
whose point P is at the fixed center of the rotating Earth and whose axes do not
rotate with the Earth. As another example, when the motion of the Earth about the
Sun is explained, it is standard to assume that the center S of the Sun is fixed and to
choose P to be this point. The point S is then used to construct an inertial reference
frame. Other applications in celestial mechanics might need to consider the location
of the point P for the inertial reference frame as the center of mass of the solar sys-
tem with the three fixed mutually perpendicular axes defined by use of certain fixed
stars [80].

For the purposes of this text, we assume the existence of a fixed point O and
a set of three mutually perpendicular axes that meet at this point (see Figure 1.1).
The set of axes is chosen to be the basis vectors for a Cartesian coordinate system.
Clearly, the axes and the point O are an inertial reference frame. The space that
this reference frame occupies is a three-dimensional space. Vectors can be defined
in this space, and an inner product for these vectors is easy to construct with the dot
product. As such, we refer to this space as a three-dimensional Euclidean space and
we denote it by 3.

* Discussions of his experiment and their interpretation can be found in [62, 138, 207]. Among his
other contributions [215], Foucault is also credited with introducing the term “gyroscope.”



