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Preface

This book was developed from course notes that we wrote, having repeatedly
taught courses on the numerical solution of ordinary differential equations
(ODEs) and related problems. We have taught such courses at a senior
undergraduate level as well as at the level of a first graduate course on
numerical methods for differential equations. The audience typically consists
of students from mathematics, computer science, and a variety of disciplines
in engineering and the sciences such as mechanical, electrical, and chemical
engineering, physics, and earth sciences.

The material that this book covers can be viewed as a first course on the
numerical solution of differential equations. It is designed for people who
want to gain a practical knowledge of the techniques used today. The course
aims to achieve a thorough understanding of the issues and methods involved
and of the reasons for the successes and failures of existing software. On one
hand, we avoid an extensive, thorough, theorem-proof-type exposition: we
try to get to current methods, issues, and software as quickly as possible.
On the other hand, this is not a quick recipe book, as we feel that a deeper
understanding than can usually be gained by a recipe course is required to
enable students or researchers to use their knowledge to design their own
solution approaches for any nonstandard problems they may encounter in
future work. The book covers initial value and boundary value problems,
as well as differential-algebraic equations (DAEs). In a one-semester course,
we have typically been covering over 75% of the material it contains.

We wrote this book partially as a result of frustration at not being able
to assign a textbook adequate for the material that we have found ourselves
covering. There is certainly excellent, in-depth literature around. In fact, we
are making repeated references to exhaustive texts which, combined, cover
almost all the material in this book. Those books contain the proofs and
references which we omit. They span thousands of pages, though, and the
time commitment required to study them in adequate depth may be more
than many students and researchers can afford to invest. We have tried
to stay within a 350-page limit and to address all three ODE-related areas
mentioned above. A significant amount of additional material is covered in
the exercises that conclude all but the first chapter. Other additional im-
portant topics are referred to in brief sections titled “Notes and References.”
Software is an important and well-developed part of this subject. We have

XV



xvi Preface

attempted to cover the most fundamental software issues in the text. Much
of the excellent and publicly available software is described in the “Soft-
ware” sections at the end of the relevant chapters, and available codes are
cross-referenced in the index. Review material is highlighted and presented
in the text when needed, and it is also cross-referenced in the index.

Traditionally, numerical ODE texts have spent a great deal of time devel-
oping families of higher-order methods, e.g., Runge-Kutta and linear multi-
step methods, applied first to nonstiff problems and then to stiff problems.
Initial value problems and boundary value problems have been treated in
separate texts, although they have much in common. There have been
fundamental differences in approach, notation, and even basic definitions
between ODE initial value problems, ODE boundary value problems, and
partial differential equations (PDEs).

We have chosen instead to focus on the classes of problems to be solved,
mentioning wherever possible applications which can lend insight into the
requirements and the potential sources of difficulty for numerical solution.
We begin by outlining the relevant mathematical properties of each prob-
lem class, then carefully develop the lower-order numerical methods and
fundamental concepts for the numerical analysis. Next we introduce the ap-
propriate families of higher-order methods, and finally we describe in some
detail how these methods are implemented in modern adaptive software.
An important feature of this book is that it gives an integrated treatment
of ODE initial value problems, ODE boundary value problems, and DAEs,
emphasizing not only the differences between these types of problems but
also the fundamental concepts, numerical methods, and analysis which they
have in common. This approach is also closer to the typical presentation for
PDEs, leading, we hope, to a more natural introduction to that important
subject.

Knowledge of significant portions of the material in this book is essen-
tial for the rapidly emerging field of numerical dynamical systems. These
are numerical methods employed in the study of the long-term, qualitative
behavior of various nonlinear ODE systems. We have emphasized and de-
veloped in this work relevant problems, approaches, and solutions. But we
avoided developing further methods which require deeper, or more specific,
knowledge of dynamical systems, which we did not want to assume as a
prerequisite.

The plan of the book is as follows. Chapter 1 is an introduction to the
different types of mathematical models which are addressed in the book.
We use simple examples to introduce and illustrate initial and boundary
value problems for ODEs and DAEs. We then introduce some important
applications where such problems arise in practice.

Each of the three parts of the book which follow starts with a chapter
which summarizes essential theoretical or analytical issues (i.e., before ap-
plying any numerical method). This is followed by chapters which develop
and analyze numerical techniques. For initial value ODEs, which comprise
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roughly half of this book, Chapter 2 summarizes the theory most relevant
for computer methods, Chapter 3 introduces all the basic concepts and sim-
ple methods (relevant also for boundary value problems and for DAEs),
Chapter 4 is devoted to one-step (Runge-Kutta) methods, and Chapter 5
discusses multistep methods.

Chapters 6-8 are devoted to boundary value problems for ODEs. Chap-
ter 6 discusses the theory which is essential to understanding and making
effective use of the numerical methods for these problems. Chapter 7 briefly
considers shooting-type methods, and Chapter 8 is devoted to finite differ-
ence approximations and related techniques.

The remaining two chapters consider DAEs. This subject has been re-
searched and solidified only very recently (in the past 15 years). Chapter 9
is concerned with background material and theory. It is much longer than
Chapters 2 and 6 because understanding the relationship between ODEs and
DAEs, and the questions regarding reformulation of DAEs, is essential and
already suggests a lot regarding computer approaches. Chapter 10 discusses
numerical methods for DAEs.

Various courses can be taught using this book. A 10-week course can
be based on the first 5 chapters, with an addition from either one of the
remaining two parts. In a 13-week course (or shorter in a more advanced
graduate class) it is possible to comfortably cover Chapters 1-5 and either
Chapters 6-8 or Chapters 9-10, with a more superficial coverage of the
remaining material.

The exercises vary in scope and level of difficulty. We have provided some
hints, or at least warnings, for those exercises that we (or our students) have
found more demanding.

Many people helped us with the tasks of shaping up, correcting, filtering,
and refining the material in this book. First and foremost are our students in
the various classes we taught on this subject. They made us acutely aware of
the difference between writing with the desire to explain and writing with the
desire to impress. We note, in particular, G. Lakatos, D. Aruliah, P. Ziegler,
H. Chin, R. Spiteri, P. Lin, P. Castillo, E. Johnson, D. Clancey, and D.
Rasmussen. We have benefitted particularly from our earlier collaborations
on other, related books with K. Brenan, S. Campbell, R. Mattheij, and R.
Russell. Colleagues who have offered much insight, advice, and criticism
include E. Biscaia, G. Bock, C. W. Gear, W. Hayes, C. Lubich, V. Murata,
N. Nedialkov, D. Negrut, D. Pai, J. B. Rosen, L. Shampine, and A. Stuart.
Larry Shampine, in particular, did an incredibly extensive refereeing job and
offered many comments which have helped us to significantly improve this
text. We have also benefitted from the comments of numerous anonymous
referees.

U. M. Ascher
L. R. Petzold
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