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Preface

This book grew out of a course taught at the University of London, intended for
third-year and graduate students of electronics, computer science, mathematics,
and physics. It thus attempts to reach a wider audience than a traditional text on
communications. None the less it covers what is normally regarded as the basic
material of traditional communications theory, although not always in such
detail as a typical engineering text.

In keeping with modern trends the emphasis is totally on digital communica-
tions. Analogue communication systems such as FM radio are not discussed
since (a) they are well-covered in the classical texts, (b) they are of decreasing
importance in comparison with digital systems, (c) the concepts do net seem to
be so interesting as those of digital communications, so that the limited space
available is better used on the latter. None the less much of the modulation
theory described can easily be adapted for dealing with analogue signalling.

The book starts in a fairly traditional nmafiffers.with chapters on Fourier
theory, digital signalling methods, probaowty ¥heory amg noisy channels. How-
ever it then goes on to cover several Aopits not.usually covered at this level.
(@) There is a fairly thorough discusmon.o1r SWagnon's revolutionary discovery
that with suitable coding informatioh 4fansmission over A noisy channel at a
given rate not set too high can be cdgried oug/with 3 probability of error as
small as one pleases. This is first illustrateg using a syple form of modulation
knewn as pulse-position modulation. Shannon’s tiforem is then discussed as it
applies to the band-limited Gaussian channel. (b) Error-correcting codes are
introduced in the context of Gaussian channels as forms of modulation which
lower the probabilities of error. (c) Inan attempt to allay the idea that Shannon’s
work is rather remote from everyday life a family of powerful and useful error-
correcting codes is introduced, capable of approaching the Shannon limit.
(d) The advent of optical communications means that the limitation imposed
by quantum theory on information rates is now an important topic. This topic
is discussed from an elementary point of view, but without sacrificing accuracy
of presentation. (e) Cipher systems are becoming increasingly important in .-
communications systems, because of the risk of interception and tampering
to which signals sent by radio are prone. Moreover there have been some exciting
theoretical developments in this field in the last few years.

The topics have been selected so that the mathematics is both conc :ptually
straightforward and also useful in other contexts. Three chapters cover the
mathematical background. They have been spaced out so that applications of
the techniques follow the introduction of the techniques as soon as possihle.
Of necessity the treatments are brief, so that some familiarity is helpful, but
they are also intended to be as far as possible complete for the purpose in hand.
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This is to minimize the number of gaps in the main lines of development needing
to be filled by appeal to external authority or by the use of material in other
texts. Of the mathematical topics, most third-year students will have.some
familiarity with Fourier iransforme and probability theory. The third topic,
the theory of finite fields, is not usually found in elementary texts on com-
munications theory. However it seems that it is becoming as much part of the
repertoire of communications theory as the other topics. Although coding has
been introduced fairly early on as a form of digital modulation and as a natural
extension of modulation techniques like signal-constellations, none the less the
use of algebraic structures in coding has been left until later. Algebraic codes
are then treated in reasonable detail. Fortun-tely the algebra used here closely
mimics ordinary polynomial algebra, and so the reader is never very far from
what is familiar to him, ,

It may be worth drawing the reader’s attention to the index, A lot of trouble
has gone into preparing it. If a technical term or acronym is used without defini-
tion or cross-reference, then the index should indicate where it is first used.
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Glossary

-Af)
a(t)
B
C
c'
cov(x)
d
E
Ey
erfc(x)
erf(x)
f
GHz
h
H(f)
h(?)
hi;

R
sinc(x)

two-sided noise spectral density, p. 79
autocorrelation function of noise, p. 79
bandwidth equivalent, p. 95

chanrel capacity (Ch. 5),(5.42) on p. 113
scaled channel capacity, = Cin2,(5.43)on p. 113
covariance of random variable x, (4.5) on p. 72
Hamming distance (Ch. 6), p. 133

energy of signal, p. 88

energy per bit of information, (6.14) on p. 135
error-function complement, (4.18) on p. 76
errQr function, p. 228

frequency, p.6

frequency unit, = 10° Hz, p. 7

Planck’s constant, p. 187

filter transfer function, p. 22

filter impulse-response function. p. 21
parity-check matrix (Chs. 6, 7),(6.18) on p. 137
information, (3.1) on p. 40

information rate, p. 88

scaled information rate, = Jin2, (4.56) on p. 88
frequency unit, = 103 Hz, p. 6

Boltzmann’s cunstant, p. 10

frequency unit, = 10°Hz, p. 6

mod symbol, p. 123, p. 162

photons per normal mode {Ch. 8), p. 200’
signal power, p. 87

probability of event 4, p. 70

probability of event 4 given event B, p. 71
bit-error probability, p. 143

error probability, (4.52) on p. 87

word-error probability, p. 142

code-rate, =k/n, (6.12) on p. 135

raised-cosine function, (2.6) on p. 15

sinc function, =sin(mx)/(nx), (2.5) on p. 14



var(x)
w

z(t)

GLOSSARY

number of errors (Chs. 6, 7), p. 135

period, p. 26, or long interval of time, p. 45 n.
duration of pulse or bit, p. 45 n.

duration of codeword, p. 45 n.

frequency unit, = 10'* Hz, p. 7

variance of random variable x, (4.4) on p. 72
bandwidth, p. 26

Hamming weight (Ch. 6), p. 134

polynomial argument (Ch. 7), p. 160
positive-frequency representation, (3.17) on p. 61
field element obeying a* = a + 1 (Ch. 7 only), p. 156
subscript denoting member of ensemble (Ch. 4), p. 72
=FEy/n,(6.13)onp. 135

delta function, p. 19

Kronecker delta symbol, (5.6) on p. 96

(nng in Ch. 8) white-noise density, (4.36) on p. 80
(Ch. 8 only) quantum efficiency, p. 189
noise-temperature p. 82 '

phasor, (3.21) on p. 62

rectangular-pulse function, (2.3) on p. 14
probability density, p. 73

joint probability density, p. 73

congruence symbol, p. 162

convolution symbol, p. 18

p. 123

combinatorial factor, p. 71

mean of random variable x, p. 72

sha function, (2.54) on p. 35
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1. Introduction

1.1 Aims and outline
1.1.1 Introductory comments

This book is planned around a theme, the theme of reliable digital communica-
tions. This theme is used as a guide for selecting topics from communications
theory. It is not rigidly pursued however, and side-tracks of interest are often
investigated as well. In consequence the text covers both the basics of digital
communications and the basics of the theory of error-correcting codes as a single
topic. It provides an introduction to coding theory in the context of traditional
communications theory. This has teen done by introducing coding as a form of
digital modulation. In consequence it will be found that this book, although it
starts in the manner of most textbooks on communications theory, brings in
considerations of reliability and coding at a fairly early stage. The words ‘com-
munications’, ‘digital’, and ‘reliable’ are examined further in the next three
subsections. :

The second part of the title refers to error-correcting codes. These are becom--
ing more widely used in communications for at least the following reasons:

(a) The electronic hardware for carrying out the necessary computations for
encoding and decoding is becoming cheaper and more reliable, so that what a
few years ago was not economically feasible is easily carried out now.

(b) Some applications, such as the sending of data by cipher, need a level of
reliability higher than usual. Ciphers are designed to detect tampering with
the data-stream and so even a slight error may well leave a block of data
indecipherable.

(c) The alternative of using error-checking, followed if necessary by a
request for retransmission, may be clumsy where the round-trip time is rather
long, as on a satellite link, or it may be inconvenient or even impossible, as with
a recording or a broadcast sent to several receivers.

(d) Modern developments such as fibre-optic cables provide channels which
can bear the extra load imposed by error-correcting codes. These codes always
increase the amount of data to be sent since they work by introducing redundant
checks by means of which errors are not only detected but also corrected.

1.1.2 Communications

The word ‘communications’ will refer to the point-to-point transmission of
information, usually by electrical means, either by wire, coaxial cable, wave-
guide, or by radio. The overall system consists of several parts:

(a) The first component is the source, which provides the information to be
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sent. There are basically two types of information-signal, analogue and digital.
Analogue signals are in the form of a continuously varying function of time.
Typical sources of such signals are microphones and television cameras, which

" translate sound- and light-intensities respectively into electrical signals. Digital

sources may be computer files or impulse streams used for driving remote
teletypes or visual display units. Here the information is coded into a stream of
pulses, whose heights can take only a discrete set of values, usually just two.

(b) The output from the source is then processed by a modulator in prepara-
tion for sending it over the channel.

(c) The channel is the link to the remote location where the information is
to be sent, It may be a wired electrical connection, such as a telephone or telex
line, or a radio link, where the transmitter radiates electromagnetic waves into
space which are picked up by a receiver at the remote location. Other examples
of channels are information-storage systems such as magnetic discs and tapes,
which can be regarded as linking the sender who puts in a message at one time to
the receiver who retrieves it, perhaps months later. The channel is the part of
the communication system not under the control of the sender or receiver, and
it tends to degrade the signal. Two main forms of such degradation will be
considered. The channel can distort the signal in a predetermined way, which
can be compensated for. It can also introduce interference, or noise, into the
received signal in a manner which is unpredictable except in a statistical sense.

(d) The channel delivers the signal to the receiver. The degradation can cause
errors at the receiver, and quite sophisticated means may be needed to combat
its effects,

 (e) After any necessary processing the signal is passed on from the receiver
to its destination, the information sink. What happens to it after that is not the
concern of this book.

1.1.3 The robustness of digital communi‘cations .

Digital signalling has an innate capacity .or countering interference which gives
it a qudlity of robustness or strength. We illustrate this by contrasting digital and
analogue signalling, ,

Suppose that a remotely situated instrument has tq send back the values of
some physical variable such as wind-speed or temperature to a centrai station
along a signal-wire. A very simple method is to put a voltage on the wire propor-
tional to the instrument reading. The voltage is then an analogue of the physical
quantity being measured and so this system of sending the results is called
analogue transmission. The possible values of the physical quantity and hence
the corresponding voltage form a continuous range. Hence if there is any inter-
ference on the wire which changes the voltage as measured at the receiving end
there is no simple way of knowing that the received value is false..

Now suppose the transmitter is designed to send voltages fro'lfr a discrete set
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of values, say, 0, 1,...,9.If the interference on the wire is very unlikely to cause
the output to deviate by more than 0.5 V then the receiver can tell quite reliably
what actually was sent. Thus if 7.21 V is received then it is almost certain that
7V was sent. Only very occasionally when the interference happens to be too
large is the receiver fooled. A transmission system, in which the possible signals
fed into the channel form a discrete set, is said to use digital signalling. As noted
above, this discreteness provides a capacity for correcting the effects of inter-
ference and hence can be used to make the signalling very reliable. This advan-
tage of digital signalling over analogue sigpalling may not be very great in a
simple system, but if the signal has to go through a lot of complicated processing
then the tendency of analogue signals to ‘drift’ makes them difficult to deal
with. In contrast digital signals can be corrected or re-formed at each stage.

There are two main disadvantages of digital signalling. The first is that the
electronics may be rather complicated. This is no longer necessarily a serious
disadvantage, since developments in electronics have made available hardware
of incredible complexity combined with remarkable cheapness and reliability
against breakdown. The second disadvantage is that digital signalling makes
greater demands on the channel. (In particular it needs a greater bandwidth.)
Thus suppose that we wish the remote instrument to send its readings accurate
to three figuzes. Sending a reading like 7.52 is no harder than sending a single
integer for an analogue system, but the digital system just described has to send
three distinct digits, 7, 5, and 2, either in succession (serially) along the wire, or
in parallel along three wires. Again, developments in the techniques of com-
munication have reduced the seriousness of this problem.

The points made in this section can be illustrated by considering the trend
towards digital sound-recording (Philips Technical Review 1982). In the old
system the sound-signal was represented in an analogue manner by the con-
tinuously variable magnetization of a magnetic tape or by the lateral displace-
ment of the groove on a record. Digital recording involves sampling the signal
very frequently (at 44.1 thousand times a second), and representing the sampled
values digitally to a sufficiently high precision. (Sixteen binary digits are used
rather than the three decimal digits in the example above.) The ensuing stream
of digits is then written on to a medium such as a video disc or video tape,
originally developed for analogue television signals, and which in consequence
can provide the extra resources (in bandwidth) needed. This technique can
obviate not only the hiss and crackle caused by imperfections in the record,
but also the effects of unsteadiness in the turntable speed, and frequency and
intermodulation distortion in the recording process. S

1.1.4 Reliable communications

If the reliability of a signalling system is too low, then one way of getting a
message through is to send it several times, so that the receiver can piece it
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together from the various garbled versions received. Such a strategy evidently
slows up the transmission rate, the rate at which messages are getting through,
and it is easy to see that the achievement of very high reliability involves a great
number of repetitions. It seems reasonable to expect that, in general, arbitrarily
high reliability can only be achieved at the cost of an excessively low trans-
mission rate. However, Shannon (1948) proved that this is not so, and that
arbitrarily high reliability can be achieved while keeping the transmission rate
up at a finite value. His work spurred on the development of both - :“orma-
tion theory and of coding theory. Information theory provides precise de initions
of the amount of information and of information rates. Shannon pro ed that
arbitrarily high reliability can be achieved if and only if the rate of transmission
of information is below a rate called the channel capacity. This reliability is
achieved by enhancing the robust quality of digital signalling just described. In
practice error-correcting codes are used and the attainment of very high reliabili-
ties is part of the province of coding theory. Unfortunately, Shannon’s proof
failed to demonstrate a practical coding scheme, and in consequence it was
. believed for a while that any code achieving the levels of reliability promised by
" Shannon would be impossibly complicated and totally impractical to use,
employing huge lookup tables whose entries might well exceed the total number
of atoms in the earth. However, as we shall see, families of codes have been
found which can achieve arbitrarily high reliability without excessive complexity.
In consequence, some of these codes are useful in practice; they are not too hard
to decode, and yet they can attain reliabilities as high as one may reasonably
demand in this uncertain world.

1.1.5 Qutline

The rest of this chapter will be used to fill in background material.

Chapter 2 contains a brief summary of Fourier theory, one of the mathema-
tical tools needed in communications theory. One may remind oneself of how
basic it is by noting that the concepts of frequency and of bandwidth in radio
signalling are derived from Fourier theory. , '

Chapter 3 discusses ways in which digital signalling is carried out. It draws
heavily on the Fourier theory of Chapter 2 in the discussion of bandwidths of
pulsed signalling. Two examples of the robustness of digital signalling are given,
In the first example the probability of error is considered when a signal has to be
relayed by a long line of repeaters, and in the second it is shown how adaptive
equalizers can be made to track frequency and phase errors in the transmission.
Another important topic is how analogue signals can be faithfully sampled for
digital transmission or recording. It seems reasonable to expect that sampling
would cause significant degradation, but in fact this need not be so. The topics
of information theory and data-compression are touched on, but only super-
ficially since that is sufficient for the discussions at a later stage.



