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Foreword

|

\

The aim of the two meetings was to emphasise how suitable analysis can lead
to a better appreciation of the factors influencing tribological processes. Several
areas were covered, so that an overview is gained of how contact mechanics can
contribute to understanding and perhaps lead to the transfer of ideas across fields.

In the analysis of contact problems both analytical and numerical solutions are
considered. How to carry out numerical contact stress calculations efficiently and
reliably is one area of importance dealt with. Situations treated range from low
pressure rubber contacts to the extreme pressures encountered in metal machin-
ing. Each illustrates particular problems of analysis. |

The Editors wish to acknowledge the help of staff at IOP Publishing, Bristol
and at the Malaysian Rubber Producers Research Association, Hertford in the
preparation of manuscripts. i

J E Mottershead, University of Liverpool
A D Roberts, MRPRA
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CLASSICAL VERSUS NUMERICAL METHODS OF ELASTIC
CONTACT STRESS ANALYSIS

K L Johnson

Department of Engineering, University of Cambridge

As the title suggests classical and numerical
methods of analysis are frequently viewed as
competitive and mutually exclusive. This is not as
it should be ! Most progress is achieved if both
approaches can be combined so that the strengths of
one compensate the weaknesses of the other.

The finite-element method is not intrinsically well
suited to the high stress gradients of contact
stress problems. Alternative methods will be
described and ways in which some of the
disadvantages can be ameliorated will be discussed.

Finally, attention will be drawn to the ‘elastic
foundation' and ‘wire brush' models of normal and
tangential contact for obtaining quick, approximate
solutions to contact problems.

Hertz theory
In general, a numerical method may be necessary when

the Hertz conditions are violated. The restrictions
of the Hertz theory may be listed as

{l) Small strains o

{2) Smooth, continuous, second order surfaces

(3) Contact area small compared with size of bodies
(elastic half-space idealisation) and the
contact stress distribution can be treated
separately from the general distribution of
stress in the two bodies. )

(4) Frictionless

(5) Non-conforming

The sort of situations may require numerical solution
are

(1) conforming surfaces; relax (5)

(il contacts with friction; relax (4)

{iii) discontinuous surfaces in contact
region; relax (2)

(iv) ‘large’ contact areas; relax (3)

© 1990 IOP Publishing Ltd



Each of these cases will be considered. The
difficulties of elastic contact stress theory arise
because the displacement at any point in the contact
surface depends upon the distribution of pressure
throughout the whole contact. To find the pressure
at any point in the contact generally requires the
solution of an integral equation. This difficulty
is avoided if the solids can be modelled by an
elastic foundation (see final section).

CONTACT OF CONFORMING SURFACES

Many non-Hertzian contact problems do not permit
analytical solutions, such as the case of conforming
contacts where the initial separation cannot be
described by a second-order polynomial. Thus the
object is to determine the normal pressure
distribution p (x,y) which satisfies the boundary
conditions at the interface (fig.l) given by the

o~
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FIG.1l - Contact of frictionless elastic bodies
profiles z.(x,y) and 2,{x,y). Here the normal

pressure i3 found on t%e assumption that the
surfaces are frictionless, and that the contacting
bgdies can be regarded as half-spaces.

In the contact area
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where v is Poisson's ratio, G the shear modulus

and £ and n are dummy variables 1in the

integral. This is an integral eguation for p(x,y)
acting on a contact area A whose shape and size are
not known at the outset. Three methods of solution
will be described.

Method (i) Analytical
The case of plane strain or axi-symmetric

problems requi.es the solution for p(x) of the
integral equation

a
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The classical method which has been applied to line
contact and axi-symmetric problems in which the
shape of the contact area is known, is to represent
the pressure distribution by an infinite series of
known functions, most conveniently by Chebychev
polynomials

Method (ii) Matrix inversion

A different approach afforded by modern computers is
to deal with a discrete set of ‘traction elements’.
The boundary conditions are then satisfied at a
discrete number of points - the "matching points’'.
The traction can be represented either by adjacent
columns of uniform pressure leading to a piecewise
constant distribution (Fig.2a) or by overlapping
triangular elements, giving rise to a piecewise
linear distribution (Fig.2b). The surface
displacements are finite everywhere, in the former,
but the displacement gradients are infinite between

adjacent elements. The latter produces surface
/)
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FIG.2 - Discretized traction elements in elastig
contact : (a)piecewise constant; (b)piecewise linear

displacements which are smooth and continuous. One
determines analytically the influence

coefficients Ciu which express the displacement

w. due to unit Bressure p.. The total

displacement is then giveﬂ by

3, = - E5Es ey

It is first necessary to estimate the contact
area. A suitable first guess is provided by the
surface of interpenetration of the undeformed
profiles.

Given w,(x) + w,(x) from profiles, one
inverts“the aboVe matrix to obtain p(x).

For the second iteration, relax p at all points

in which it has a negative (tensile) value and
repeat the process. The procedure converges to the
correct solution in which the pressure is positive
throughout the true contact area and falls to zero
at its edges.

Method (iii) Variation principles (KalkKer)
The true contact area and pressure p(x,y) is that

which minimises the total complementary energy
Vx, where

v* =U*+fp(h.~5)°‘/\ R (3)
A

subject to p > O everywhere. For linear elastic
materials
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h {(x,y) = gap before deformation = il(x,y)+zz(x,y)
6 = compression at origin

For an elastic half-space the 'relationships betwgen
p. and w, are linear so that the strain energy U

id quadr%tic in p,. Therefore V¥ can be minimised
by use of a quadr%tic programming routine.

An example is provided by the contact of an
isotropic wavy surface with a flat (Johnson et al,
Int.J.Mech.Sci.27, 383, 1985) as shown (fig.3),

—,
'

FIG.3 - Areas of contact and pressure
distribution fcund by using equations (3) and (4).



Half-space problems with friction

L}

There are no well-established .general methods for -
problems involving friction. With friction the
history of loading must be followed ‘which requires
incremental formulation. The interaction between
the shear traction g and pressure p gives coupled
integral equations: one for normal and the other
for tangential deformation. 1In plane strain they
may be written.

%,)_(t)l = _,_aw’z- =
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In these equations the elastic properties can be
expressed by two independent parameters known

as Dundur's constants: -

< 2 0ov/G = (-%) /G,
(-y)6, + (-3 6,

o G=av)/E (-2 [,
P - . - ; .
§ 2 0-%) )G, + 0%/ 6,

CONDITIONS AT EDGE OF CONTACT - SINGULARITIES

In problems of normal elastic contact where Hertz
restriction (2) is relaxed, it is instructive to
examine the stress conditions which may arise close
to the edge of contact.

{a) Continuous surfaces

When two non-conforming elastic bodies having
continuous profiles are pressed into contact the
pressure must fall continuously to zero at the
edge of contact to avoid interference outside the
contact area (see fig.4).
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FIG.4 - Continuous surfaces : pressure falls to
zero at edge.

For example, with contacting cylinders

the resulting pressure distribution is semi-
ellipsoidal, of the form p(l - x2/a?2)l
falling to zero at x = #a.

{b) Non-continuous surfaces

If one or both bodies has a discontinuous profile
at the edge of the contact the sitution is
different, and usually a high stress concentration
would be expected at the edge. 1In general there
will be a s%ngularity at 0(fig.5) such that p
varies as p where

n = f [0;“1“18]

FIG.5 - Edge of contact

general conditions

G, v

An example would be the indentation of an elastic
half-space by a rigid square punch, whence

¢:'g )/AT—"O,DL'-:"

W i % g = 1 | =~ 2ZPY = B
v, =03 —> P "‘(u—v,) 0.226




If v =0 or 0.5, B =0 which gives n = -1/2
(Fig.6]).
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FIG.6 - Edge of contact : Rigid square punch
gives square-root singularity.

It is recognised that, in reality, this infinite
stress cannot exist. The elasticity theory is only
valid for small strains, and real materials will
yield plastically at a finite stress.

Even so, as developments in linear elastic fracture
mechanics have shown, the strength of stress
sifgularities calculated by linear elastic theory
is capable of providing useful information about
the intensities of stress concentrations and the
probable extent of plastic flow.

Discontinuities within the contact

For smooth and continuous surface profiles the
stresses are finite everywhere; a rigid punch
introduces an infinite pressure at the contact

edge. The influence of a sharp discontinuity in the
slope of the profile within the contact area is

now examined by reference to the contact of a wedge
with a plane surface. 1In order for deformations to
be small and within the scope of linear elasticity
theory, the semi-angle o of the wedge must be

close to 90°.

If a two-dimensional wedge is taken to indent a
flat surface such that the widths of the contact
strip is small compared with the size of the two
solids, then the elastic solutions for a half-space
can be used for both wedge and plane surface. The
deformation-is shown (fig.7). Logarithmic
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FIG.7 - Indentation by a blunt wedge: pressure

r(7<)<=

distribution. Discontinuity ‘of slope at
apex gives a logarithmic singularity

singularities arise and the pressure distribution
may be deduced as

: . B " =
E?kCoE<£ Ln a +Jar-x -
2 T oo = oF-x*

such that the pressure p(o) —» ©», that is, a
logarithmic singularity at the apex of the wedge.

The information in this section is useful in
numerical solutions, in suggesting suitable
‘singularity elements' for incorporation in a
finite element scheme.

FINITE SIZE BODIES

When the bulk stress field and the contact stress
field cannot be separated, then one is usually
obliged to resort to numerical methods. 1In gauging
the importance of the proximity of the boundaries
of the body, it should be kept in mind that

and

in line contact o decays to r'l

in point contact o decays to r~

Numerical methods

(
(

i)
ii)

Finite-element analysis

Boundary element analysis.

Applicable for example to the contact of
two blocks (fig.8) or the Hertz loading
of a quarter-space (Fig.9). N\,



In the boundary element method each body (or both)
are considered embedded in an infinite elastic
solid. Forces are distributed round the boundary in
the form of ‘boundary elements’ such that the
boundary conditions on the surface of this body
(stress or displacement) are satisfied. Internal
stresses at any point within the body are then found
by superposition of the influences of all boundary
~elements.

Potential advantage (i) The surface rather
than the volume is discretised and this can

result in more efficient solutions than FE.

{ii) The internal stresses (away from the boundary) .
are calculated analytically and are thus

negligibly influenced by the finite size of the

boundary elements.
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FIG.8 - Boundary element method: each of the
bodies is considered embedded in an infinite
elastic solid. . .
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