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Preface

Oxidation reactions play an important role in organic chemistry and there is an in-
creasing demand for selective and mild oxidation methods in modern organic synth-
esis. During the last two decades there has been a spectacular development in the
field and a large number of novel and useful oxidation reactions have been discov-
ered. Significant progress has been achieved within the area of catalytic oxidations,
which has led to a range of selective and mild processes. These reactions may be
based on organocatalysis, metal catalysis or biocatalysis. In this regard enantioselec-
tive catalytic oxidation reactions are of particular interest.

Due to the rich development of oxidation reactions in recent years there was a need
for a book covering the area. The purpose of this book on “Modern Oxidation Methods”
is to fill this need and provide the chemistry community with an overview of some re-
cent developments in the field. In particular some general and synthetically useful oxi-
dation methods that are frequently used by organic chemists are covered. These meth-
ods include catalytic as well as non-catalytic oxidation reactions in the science frontier
of the field. Today there is an emphasis on the use of environmentally friendly oxidants
(“green” oxidants) that lead to a minimum amount of waste. Examples of such oxidants
are molecular oxygen and hydrogen peroxide. Many of the oxidation methods dis-
cussed and reviewed in this book are based on the use of “green” oxidants.

In this multi-authored book selected authors in the field of oxidation provide the
reader with an up to date of a number of important fields of modern oxidation meth-
odology. Chapter 1 summarizes recent advances on the use of “green oxidants” such
as Hy0, and O, in the osmium-catalyzed dihydroxylation of olefins. Immobilization
of osmium is also discussed and with these recent achievements industrial applica-
tions seem to be near. Another important transformation of olefins is epoxidation.
In Chapter 2 transition metal-catalyzed epoxidations are reviewed and in Chapter 3
recent advances in organocatalytic ketone-catalyzed epoxidations are covered. Cataly-
tic oxidations of alcohols with the use of environmentally benign oxidants have de-
veloped tremendously during the last decade and in Chapter 4 this area is reviewed.
Aerobic oxidations catalyzed by N-hydroxyphtalimides (NHPI) are reviewed in Chap-
ter 5. In particular oxidation of hydrocarbons via C—H activation are treated but also
oxidations of alkenes and alcohols are covered.
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Preface

In Chapter 6 ruthenium-catalyzed oxidation of various substrates are reviewed
including alkenes, alcohols, amines, amides, -lactams, phenols, and hydrocarbons.
Many of these oxidations involve oxidations by “green oxidants” such as molecular
oxygen and alkyl hydroperoxides. Chapter 7 deals with heteroatom oxidation and
selective oxidations of sulfides (thioethers) to sulfoxides and tertiary amines to amine
oxides are discussed. The chapter covers stoichiometric and catalytic reactions includ-
ing biocatalytic reactions. Oxidations catalyzed by polyoxymetalates have increased in
use during the last decade and this area is covered in Chapter 8. Oxidations with
various monooxygen donors, peroxides (including hydrogen peroxide) and molecular
oxygen are reviewed. Also, recent attempts to heterogenize homogeneous polyoxy-
metalate catalysts are discussed. Chapter 9 comprises an extensive review on oxida-
tion of ketones with some focus on recent advances in Baeyer-Villiger oxidations.
Catalytic as well as stoichiometic reactions are covered. Finally, in Chapter 10 manga-
nese-catalyzed hydrogen peroxide oxidations are reviewed. The chapter includes
epoxidation, dihydroxylation of olefins, oxidation of alcohols and sulfoxidation.

I hope that this book will be of value to chemists involved in oxidation reactions in
both academic and industrial research and that it will stimulate further development
in this important field.

Stockholm, July 2004 Jan-E. Bickvall
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1
Recent Developments in the Osmium-catalyzed Dihydroxylation
of Olefins

UTA SUNDERMEIER, CHRISTIAN DOBLER, and MATTHIAS BELLER

1.1
Introduction

The oxidative functionalization of olefins is of major importance for both organic
synthesis and the industrial production of bulk and fine chemicals [1]. Among the
different oxidation products of olefins, 1,2-diols are used in a wide variety of applica-
tions. Ethylene- and propylene-glycol are produced on a multi-million ton scale per
annum, due to their importance as polyester monomers and anti-freeze agents [2].
A number of 1,2-diols such as 2,3-dimethyl-2,3-butanediol, 1,2-octanediol, 1,2-hexa-
nediol, 1,2-pentanediol, 1,2- and 2,3-butanediol are of interest in the fine chemical
industry. In addition, chiral 1,2-diols are employed as intermediates for pharmaceuti-
cals and agrochemicals. At present 1,2-diols are manufactured industrially by a two
step sequence consisting of epoxidation of an olefin with a hydroperoxide or a pera-
cid followed by hydrolysis of the resulting epoxide [3]. Compared with this process
the dihydroxylation of C=C double bonds constitutes a more atom-efficient and
shorter route to 1,2-diols. In general the dihydroxylation of olefins is catalyzed by os-
mium, ruthenium or manganese oxo species. The osmium-catalyzed variant is the
most reliable and efficient method for the synthesis of cis-1,2-diols [4]. Using os-
mium in catalytic amounts together with a secondary oxidant in stoichiometric
amounts various olefins, including mono-, di-, and trisubstituted unfunctionalized,
as well as many functionalized olefins, can be converted into the corresponding
diols. OsOy as an electrophilic reagent reacts only slowly with electron-deficient ole-
fins, and therefore higher amounts of catalyst and ligand are necessary in these
cases. Recent studies have revealed that these substrates react much more efficiently
when the pH of the reaction medium is maintained on the acidic side [5]. Here, citric
acid appears to be superior for maintaining the pH in the desired range. On the
other hand, in another study it was found that providing a constant pH value of 12.0
leads to improved reaction rates for internal olefins [6].

Since its discovery by Sharpless and coworkers, catalytic asymmetric dihydroxyla-
tion (AD) has significantly enhanced the utility of osmium-catalyzed dihydroxylation
(Scheme 1.1) [7]. Numerous applications in organic synthesis have appeared in re-
cent years [8].
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Scheme 1.1  Osmylation of olefins

While the problem of enantioselectivity has largely been solved through extensive
synthesis and screening of cinchona alkaloid ligands by the Sharpless group, some
features of this general method remain problematic for larger scale applications.
Firstly, the use of the expensive osmium catalyst must be minimized and an efficient
recycling of the metal should be developed. Secondly, the applied reoxidants for Os"!
species are expensive and lead to overstoichiometric amounts of waste.

In the past several reoxidation processes for osmium(VI) glycolates or other os-
mium(VI) species have been developed. Historically, chlorates [9] and hydrogen per-
oxide [10] were first applied as stoichiometric oxidants, however in both cases the dihy-
droxylation often proceeds with low chemoselectivity. Other reoxidants for os-
mium(VI) are tert-butyl hydroperoxide in the presence of Et,NOH [11] and a range of
N-oxides, such as N-methylmorpholine N-oxide (NMO) [12] (the Upjohn process) and
trimethylamine N-oxide. K3[Fe(CN),] gave a substantial improvement in the enantios-
electivities in asymmetric dihydroxylations when it was introduced as a reoxidant for
osmium(VI) species in 1990 [13]. However, even as early on as 1975 it was already
being described as an oxidant for Os-catalyzed oxidation reactions [14]. Today the “AD-
mix”, containing the catalyst precursor K,[OsO,(OH),], the co-oxidant K;3[Fe(CN)g],
the base K,COs, and the chiral ligand, is commercially available and the dihydroxyla-
tion reaction is easy to carry out. However, the production of overstoichiometric
amounts of waste remains as a significant disadvantage of the reaction protocol.

This chapter will summarize the recent developments in the area of osmium-cata-
lyzed dihydroxylations, which bring this transformation closer to a “green reaction”.
Hence, special emphasis is given to the use of new reoxidants and recycling of the
osmium catalyst.

1.2
Environmentally Friendly Terminal Oxidants

1.2.1
Hydrogen Peroxide

Ever since the Upjohn procedure was published in 1976 the N-methylmorpholine
N-oxide-based procedure has become one of the standard methods for osmium-cata-
lyzed dihydroxylations. However, in the asymmetric dihydroxylation NMO has not
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been fully appreciated since it was difficult to obtain high ee with this oxidant. Some
years ago it was demonstrated that NMO could be employed as the oxidant in the AD
reaction to give high ee in aqueous tert-BuOH with slow addition of the olefin [15].

In spite of the fact that hydrogen peroxide was one of the first stoichiometric oxi-
dants to be introduced for the osmium-catalyzed dihydroxylation it was not actually
used until recently. When using hydrogen peroxide as the reoxidant for transition
metal catalysts, very often there is the big disadvantage that a large excess of H,0,
is required, implying that the unproductive peroxide decomposition is the major
process.

Recently Bickvall and coworkers were able to improve the H,0, reoxidation pro-
cess significantly by using N-methylmorpholine together with flavin as co-catalysts
in the presence of hydrogen peroxide [16]. Thus a renaissance of both NMO and
H,0,; was induced. The mechanism of the triple catalytic H,0, oxidation is shown

in Scheme 1.2.
NN

Scheme 1.2 Osmium-catalyzed dihydroxylation of olefins using
H,0, as the terminal oxidant

CH3

Flavinpon
X z CHSX

0sO3 Flavingy

OsOy4

H20,

The flavin hydroperoxide generated from flavin and H,0, recycles the N-methyl-
morpholine (NMM) to N-methylmorpholine N-oxide (NMO), which in turn reoxi-
dizes the Os"" to Os""". While the use of hydrogen peroxide as the oxidant without
the electron-transfer mediators (NMM, flavin) is inefficient and nonselective, various
olefins were oxidized to diols in good to excellent yields employing this mild triple
catalytic system (Scheme 1.3).

2 mol% K,[0sO,(OH),]
6 mol% (DHQD),PHAL

5 mol% flavin = PH
50 mol% NMM ©/Q0H
2 equiv. tetraethylammonium

acetate )
1.5 equiv. HyO, 88% yield
tert-BuOH / H,0, 0°C 99% ee

Scheme 1.3 Osmium-catalyzed dihydroxylation of a-methylstyrene
using H,0,

By using a chiral Sharpless ligand high enantioselectivities were obtained. Here,
an increase in the addition time for olefin and H,0, can have a positive effect on the
enantioselectivity.
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