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PREFACE

The notion of negation is one of the central logical notions. Ithas been studied since
antiquity and has been subjected to thorough investigations in the development of
philosophical logic, linguistics, attificial intelligence and logic programming. The
properties of negation—in combination with those of otber logical operations and
structural features of the deducibility relation—serve as gateways among logical
systems. Therefore negation plays an important role in selecting logical systems
for particular applications. At the moment negation is a ‘hot topic’, and there is an
urgent need for a comprehensive account of this logical key concept. We therefore
have asked leading scholars in various branches of logic to contribute to a volume
on “What is Negation?”. The result is the present neatly focused collection of re-
search papers bringing together different approaches toward a general characteri-
zation of kinds of negation and classifications thereof.

The volume is structured into four interrelated thematic parts.

Part I is centered around the themes of Models, Relevance and Impossibility. In
Chapter 1 (Negation: Two Points of View), Arnon Avron develops two characteri-
zations of negation, one semantic the other proof-theoretic. Interestingly and maybe
provokingly, under neither of these accounts intuitionistic negation emerges as a
genuine negation. J. Michael Dunn in Chapter 2 (A Comparative Study of Various
Model-theoretic Treatments of Negation: A History of Formal Negation) surveys
a detailed correspohdencc-meorctic classifcation of various notions of negation in
terms of properties of a binary relation interpreted as incompatibility. Moreover,
Dunn investigates the relation between the four-valued semantics of De Morgan
negation and the Routley Star semantics for negation. Greg Restall (Chapter 3,
Negationin Relevant Logics (How I stopped worrying and learned to love the Rout-
ley star)) offers a general account of the semantics of relevance logics. Restall ar-
gues for combining truth preservation withrespeet-to.states with truth preservation
with respect 10 worlds Soas To accomodate disjenctive syllogism in reasoning about
information. Like J. Michael Dunn’s chapter, also Chapter 4 (Negation in the Light
of Modal Logic) by Kosta DoSen provides a correspondence-theoretic view of nega-
tion: the semantics of negation is given by a binary accessibility relation. When

. added to an intnitionistic Kripke frame F for negationless intuitionistic logic, this

relation may interact with the preorder of  and thereby characterize various nega-
tion axioms.

ix
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PartII 1 1s devoted to Paraconsistency, Partiality and Logic Programming. In Chap-
ter 5 (Negatwn and Contradiction), Dov Gabbay and Anthony Hunter explore the
relationship between negation and contradiction in order to develop better tech-
niques for handling inconsistent information. A dialethic account of negation is de-
veloped in Graham Priest’s chapter (Chapter 6, What Not? A Defence of Dialethic
Theory of Negation). Priest argues that theories about negation are theories about
contradictories, and according to the dialethic point of view, some contradictions
(like in paradoxes of self-reference) are true. Chapter 7 (Partial Logics with Two
Kinds of Negation as a Foundation for Knowledge-Based Reasoning) by H. Herre,
J. Jaspars, and G. Wagner examines negation in knowledge-based reasoning. Cen-
tral to this investigation is the distinction between two kinds of falsitz in knowl-
edge bases: explicit and implicit falsity, represented by strong and weak negation
respectively. The notion of a paraminimally stable miniially inconsistent model
of a deductive databese is developed. David Pearce in Chapter 8 (From Here to
There: Stable Negation in Logic Programming) analyses from the point of view of
stable models the logical properties of strong negation and negation—as—failure as
they arise in logic programming. :

Part INI deals with Absurdity, Falsity and Refutability. In his discussion of nega-
tion, Michael Hand in Chapter 9 (Antirealism and Falsity) starts with the falsity
constant | . Following M. Dummett, the meaning of L is the same as the meaning
of the (infinitary) conjunction of all atoms (save L) available in the language. But
then L may be interpreted as true. Hand concludes that the meaning of the logical
constants, in particular the meaning of negation in térms of falsity, cannot be cap-
tured by reference to introduction and elimination rules alone. Starting from the
notion of contrariety among atomic bases, Neil Tennant in Chapter 10 (Negation,
Absurdity and Contrariety) argues for negation as a primitive operation rather than
as defined in terms of implication and L. Tennant then carefully develops the sys-
tem of intuitionistic relevant logic. In Chapter 11 (Negation as Falsity: a Reply
. to Tennant), Heinrich Wansing introduces the notion of negation as falsity against
the background of Tennant’s notion of disproof. It iw_g_aﬁgn as
inconsistency is a negation as falswhile the converse 1s not true.

Part IV on Negations, Natural Language and the Liar addresses céntral negation--

theoretic themes form linguistics and philosophy. Chapter 12 (Models for Non-
Boolean Negationin Natural Languages Based on Aspect Analysis) by M. La Palme
Reyes, J. Macnamara, G. E. Reyes, and H. Zolfaghari is devoted to a category-
theoretic analysis of predicate negation (‘not to be honest’) and predicate term nega-
tion (‘dishonest’). In this approach, aspects (like “honest qua politician’) are con-
ceptualized as a category. Using the strengthened liar paradox, Jamie Tappenden
in Chapter 13 (Negation, Denial and Linguistic Change in Philosophical Logic) ar-
gues that contrary to what is widely assumed, the denial of a sentence .S is not the

- xi

assertion of another sentence, namely the negation of S.

The final chapter (Chapter 14, What is that item designated negation?) offers a
general philosophical discussion of negation. This chapter is authored by Richard
Sylvan, who died on June 26, 1996, and to whose memory we dedicate the present
volume. In the logic community, Richard Sylvan (formerly Richard Routley)is first
of all known for his influential contributions to relevance logic, notably his joint
work with Robert K. Meyer on ternary frames. Sylvan was, however, not only a
first-rate logician but also a distinguished philosopher. The chapter is characteristic
for Sylvan's philosophising with respect to clarity, depth of insight into the subject
matter, and pronounced way of presenting significant points of view.

Dov Gabbay and Heinrich Wansing
London and Leipzig
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MODELS, RELEVANCE AND IMPOSSIBILITY
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ARNON AVRON

NEGATION: TWO POINTS OF VIEW

1 INTRODUCTION

In this paper we look at negation from two different points of view: a syntactical
one and a semantical one. Accordingly, we identify two different types of negation.
The same connective of a given logic might be of both types, but this might not
always be the case.

The syntactical point of view is an abstract one. It characterizes connectives ac-
cording to the internal role they have inside a logic, regardless of any meaning they
are intended to have (if any). With regard to negation our main thesis is that the
availability of what we call below an internal negation is what makes a logic es-
sentially multiple-conclusion. ’

The semantic point of view, in contrast, is based on the intuitive meaning of a
given connective. In the case of negation this is simply the intuition that the nega-
tion of a proposition A is true if A is not, and not true if A is true.!

Like in most modern treatments of logics (see, e.g., [29; 24; 21; 33; 34; 19; 10;
15; 20]), our study of negation will be in the framework of Consequence Relations
~ (CRs). Following [10), we use the following rather general meaning of this term:

DEFINITION 1

1. A Consequence Relation (CR) on a set of, fonﬁulas is a binary relation - be-
tween (finite) multisets of formulas s.t.: :
(D Reflexivity: A & A for every formula A. _

(D Transitivity, or ‘Cut’: ifI'; - Ay, Aand A, T - Ay, then T}, T3
A1 N Ag. ’

(1) Consistency: § 1/ @ (where D is the empty multiset).

2. Asingle-conclusion CR is a CR - such that T & A only if A consists of a
single formula.

1'We have avoided here the term *false’, since we do not want to commit ourselves to the view that -
A is false precisely when it is not true. Our formulation of the intuition is therefore obviously circular,
but this is unavoidable in intuitive informal characterizations of basic connectives and quantifiers.

ki



4 . ARNON AVRON

The notion of (multiple-conclusion) CR was introduced in [29] and [30]. It was
a generalization of Tarski’s notion of a consequence relation, which was single-
conclusion. Our notions are, however, not identical to the original ones of Tarski
and Scott. First, they both considered sets (rathier than multisets) of formulas. Sec-
ond, they impose one more demand on CRs: monotonicity. We shall call a (single-
conclusion or multiple-conclusion) CR which satisfies these two extra conditions
ordinary. A single-conclusion, ordinary CR will be called Tarskian.2
" The notion of a ‘logic’ is in practice broader then that of a CR, since usually sev-
eral CRs are associated with a given logic.? Given alogic £ there are in most cases
two major single-conclusion CRs which are naturally associated with it: the exter-
nal - and the internal -%.. For example, if £ is defined by some axiomatic system
AS then Ay, -+, A, ¢ B iff there exists a proof in AS of B from A,,--- A,
(according to the most standard meaning of this notion as defined in undergradu-
ate textbooks on mathematical logic), while A4, - - - ,An l—}'; Biff A} — (A2 -
= => (A = B)---) is a theorem of AS (where — is an appropriate ‘implica-
tion” connective of the logic). Similarly if £ is defined using a Gentzen-type sys-
tem G then Ay, -+, A, F}. B if the sequent Ay, ---, A, = B is provable inG,
~while Ay, -+ - A, % B iff there exists a proof in G of = B from the assumptions
= Ai,--+,=> A, (perhaps with cuts). k4 is always a Tarskian relation, }—2 fre-
quently not. The existence (again, in most cases) of these two CRs should be kept
in mind in what follows. The reason is that semantical characterizations of connec-
tives (in particular of negation in this work) is-almost always done w.r.t. Tarskian
CRs (and so here F% is usually relevant). This is not the case with syntactical char-
acterizations, and here frequently %, is more suitable.
A final note: in order to give the global picture, we have omitted almost all
- proofs. Most of them are straightforward anyway. Those which are not, are (or
will be) given elsewhere. '

2 THE SYNTACTICAL POINT OF VIEW

2.1 Classification of basic connectives

Our general framework allows us to give a completely abstract definition, indepen-
de(zt of any semantical interpretation, of standard connectives. These characteriza-

tions explain why these connectives are so important in almost every logical sys-
tem.

2What we call a Tarskian CR is exactly Tarski’s original notion. In [13] we argue at length why the
_notion of a proof in an axiomatic system naturally leads to our notion of single-conclusion CR, and why
the further generalization to multiple-conclusion CR is also very reasonable.
3This is true even about classical logic: see [10] or [13], which contains many other examples (see
also Section 3 below). . ’
. *1 have first introduced the notations ¥ and ¢ in [7] with respect to Linear Logic. The distinction
between I—‘L 1, and+§ ;. will be of importance also in this paper.

- NEGATION: TWO POINTS OF VIEW 5

In what follows I- is a fixed CR. All definitions are taken to be relative to - (the
definitions are taken from [10]). ,

We consider two types of connectives. The first, which we call internal connec-
tives, makes it possible to transform a given sequent to an equivalent one that has
a special required form. The second, which we call combining connectives, allows
us to combine (under certain circumstances) two sequents into one which contains

exactly the same information. .
The most common (and useful) connectives are the following;
Internal Disjunction: + is an internal disjunction if for all ', A, A, B:

I'AAB if THAA+B.
Internal Conjunction': ® is an internal conjgnction ifforall ', A, 4, B:
T,A/B-A if AQBFA.
Internal Implication: — is an internal implication if for all I', A, A, B:
A+-B,A iff THA—- BA.

Internal Negation: — is an internal negation if the following two conditions are
satisfied by all I', A and A:

(1) ATFA iff THA,-A
(2 THAA if -ATFA.

Combining Conjunction: We call a connective A a combining conjunction iff for
alll', A, A, B:

F'FAAAB iff THA,A and THA,B.

Combining Disjunction: We call a connective V a combining disjunction iff for
allT A, A, B

AVB,CFA iff ATFA and B,TFA.

Note: The combining connectives are called ‘additives’ in Linear logic (see [23])
and ‘extensional’ in Relevance logic. The internal ones correspond, respectively,
to the ‘multiplicatives’ and the ‘intensional’ connectives.

Several well-known logics can be defined using the above connectives:
Mutltiplicative Linear Logic: This is the logic which corresponds to the minimal
(multiset) CR which includes all the internal connectives.

Propositional Linear Logic: (without the ‘exponentials’ and the propositional con-
stants). This corresponds to the minimal consequence relation which contains all
the connectives introduced above.

LS



6 . ARNON AVRON

Rx the Intensional Fragment of the Relevance Logic R:® This corresponds to
the minimal CR which contains all the internal connectives and is closed under con-
traction.
R without Distribution: This corresponds to the minimal CR which contains all
the connectives which were described above and is closed under contraction.,
RMI-;:® This corresponds to the minimal sets-CR whlch contains all the mterna]
connectives.
Classical Proposition Logic: This of course correSponds to the minimal ordinary
CR which has all the above connectives. Unlike the previous logics there is no
difference in it between the combining connectives and the corresponding internal
- ones.

2.2 Internal negation and strong symmetry

Among the various connectives defined above only negation essentially demands
the use of multiple-conclusion CRs (even the existence of an internal disjunction

does not force multiple-conclusions, although its existence is trivial otherwise).

Moreover, its existence creates full symmetry between the two sides of the turn-
style. Thus in its presence, closure under any of the structural rules on one side
entails closure under the same rule on the other, the existence of any of the binary

internal connectives defined above implies the existence of the rest, and the same’

is true for the combining connectives.

To sum up: internal negation is the connective with which ‘the hidden symme-
tries of logic’ [23] are explicitly represented. We shall call, therefore, any multiple-
conclusion CR which possesses it strongly symmetrical.

Some alternative characterizations of internal neganon are given in the follow-
mg proposition.

PROPOSITION 2 The Jollowing conditions on | are all equivalent:
(1) ~visaninternal negation for -

2) TFA AT, -AFA

3) ATFA FTEFA-A

4 A,-AlF andl-A A

(5) Fisclosed under the rules:

ATFA TFAA
TFA,-A SATFA

Our characterization of internal negation and of symmetry has been done within
the framework of multiple-conclusion relations. Single-conclusion CRs are, how-
ever, more natural. We proceed next to introduce corresponding notions for them.

Ssee [3] or [18].
Ssee [8; 9).
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DEFINITION 3

1. Let & be a single-conclusion CR (in a language L), and let - be a unary
connective of L. \-¢ is called strongly symmetric w.rt. to =, and = is called
an internal negation for & if there exists a multiple- -conclusion CR k7 with
the following properties:

- WTF. A THA
(ii) — is an internal negation for +-7

2. Asingle- -conclusion CR - ¢ is called essentially multiple-conclusion zﬁ‘ it has
an internal negation. . .

Obviously, if a CR -7 like in the last definition exists then it is unique. We now’

formulate sufficient and necessary conditions for its existence.

THEOREM 4 | is strongly symmetric w.rt. — iff the follawmg conditions are
satisfied:

i) Ab, A
(i) —Alg A
Gii) IfTU, Atz BthenT',-B F, -A.
Proof. The conditions are obviously necessary. Assume, for the converse, that -,
satisfies the conditions. Define: Ay, -- - yAn % By, By iffforevery 1l <i <
nand1 <j<k:
Aryoey Aica, By, =By A,y An b oA
Al!" " 1A‘n1_'B11 Y _Bj—la_‘Bj+1a e 1_'Bk F B; .
Itis easy to check that -5 is a CR whenever |- is a CR (whether single-conclusion
or multiple-conclusion), and that if I' % A then I" -2 A. The first two conditions
imply (together) that - is an internal negation for % (in particular: the second en-

tails that if A,T" F5. A thenT' +% A,-A and the first that if ' +7 A; A then

-A,T' 4 A). Finally, the third condition entails that |- is conservative over k.
[ |

PROPOSITION 5 Let L be any logic in a language containing ~ and —. Suppose

" that the set of valid formulae of L includes the set of formulae in the {-,—} lan-

guage which are theorems of Linear Logic,” and that it is closed under M P for —.
Then the internal consequence relation of L (defined using — as in the introduc-
tion) is, strongly symmetrical (with respect to —).

7Here — should be translated into linear negation, —+—into linear implication.

fv/



8 ARNON AVRON

| EXAMPLES 6
1. Classical logic.
2. Extensions af classical logic, like the various modal logics.
3. Linear logic and its various fragments.

4. The various Relevance logics (like R and RM (see [3; 18; 4] or RMI [8])
and their fragments.

5. The various many-valued logics of Lukasiewicz.
All the systems above have, therefore, an internal negation. A major system

which does not have one is intuitionistic logic. Other examples (positive and neg-
ative) will be encountered below.

Note. In all these logics it is the internal CR which is essentially multiple-con-
clusion and has an internal negation.® This is true even for classical predicate cal-

- culus: There, e.g. Yz A(z) follows from A(z) according to the external CR, but

~A(z) does not follow from -Vz A(z).?
We next discuss what properties of - are preserved by 5.

THEOREM 7 Assume \- ¢ is essentially multiple-conclusion.
_ ‘1.. k9. is monotonic iff so is - ¢.
2. b is closed under expansion (= the converse of contraction) iff so is t ..
1 3. Ais a combining conjunction fort-%, iffitisa cohbining conjunction fortg.
4~ isan internal implication for &4 iff it is an internal implication for & ;.
Note;s; |
1. Because |- has a symmetrical negation, Parts (3) and (4) can be formulated

as follows: -7 has the internal connectives iff - ¢ has an internal implication
and it has the combining connectives iff - has a combining conjunction.

8The definition of this internal CR depends on the choice of the implication connective. However,
the same CR is obtained from the standard Gentzen-type formulations of these logics (and most of them
have one) by the method described in the introduction.

9The internal CR of classical logic has been called the ‘truth’ CR in [10) and was denoted by +t,
while the external one was called the ‘validity’ CR and was denoted by F. On the propositional level
there is no difference between the two. ’
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2. In contrast, a combining disjunction for I~ is not necessarily a combining
disjunction for 5. It is easy 1o see that a necessary and sufficient condition
for this to happen is that F¢ ~(A v B) whenever k¢ -4 and g ~B. An
example of an essentially multiple-conclusion system with a combining dis-
junction which does not satisfy the above condition is RM T of [8]. That sys-
tem indeed does not have a combining conjunction. This shows that a single-
conclusion logic £ with an internal negation and combining disjunction does
not necessarily have a combining conjunction (unless £ is monotonic). The
converse situation is not possible, though: If — is an internal negation and A
is a combining conjunction then —~(=A A —B) defines a combmmg disjunc-
tion even in the single-conclusion case.

3. Aninternal conjunctlon ® for - is also not necessarily an internal conj unc-
tion for -5 . We need the extra condition that if A k. —~Bthent, ~(A®B).
An examplc which shows that this condition does not necessarily obtain even
if ¢ is an ordinary CR, is given by the following CR F¢riv:

Al,"',Anl_t."ij lﬁnzl

1t is obvious that ¢4y is 2 Tarskian CR and that every unary connective of
its language is a symmetrical negation for it, while every binary connective
is an internal conjunction. The condition above fails, however, for Firiy-

4. The last example shows also that -5 may not be closed under contraction
when I does, even if 2 is Tarskian. Obviously, I' -5, Aiff [TUA| > 2.
HenceF5,, A, Abut¥{,;, A. Theexactsituation about contraction is given
in the next proposition. '

PROPOSITION 8 If b is essentially multiple-conclusion thent% is closed under
contraction iff - ¢ is closed under contraction and satisfies the following condition:
IfAty Band—At Bthentc B.

In case &1 has a combining disjunction this is equivalent to:

oAV A.

Note. From the syntactical point of view, therefore, the law of excluded middle is
just an internal representation of the structural law of contraction!

2.3  Weak internal negation and symmetry

The symmetry conditions of Theorem 4 are really strong. We now consider what
happens if we relax them.

‘We start with some general observations (part of which bave already been made
in the proof of Theorem 4, others are generalizations of results of the previous
subsection):10

10popositions 11, 13 and 15 are from [11].
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PROPOSITION 9 ,
1 If-isa unary connective of Fc then F., as defined in th :
4 isal multiple—conclusion) CR. Moreover: & PrOof of Theorem

()T Fg AthenT e

(ipre 4 ifftc A (inothe
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7s.
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DEFINITION 10

. Aunary connective ™ of
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l
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R al versiop,
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A=A T,B3>A TI'sAAT=AB
T,AANB= A T[LAAB= A I'ssA,AAB
'T,~A=AT,-B=A I'= A, -4 I's A-B

I'-(AAB)= A P=>A,ﬂ(A/\B) I'=sA,~(AAB)

It is easy to see that only sequents of the form A => B are provable in BS and
that BS admits cut-elimination. Moreover: BJS is essentially multiple-conclusion
since:it satisfies condition (iii) of Theorem 4.

-Another interesting fact about BS is:

PRQPCSITION 16 F3g= LL, (the purely additive fragment of Linear Logic).

- The next step is'to extend s to an ordinary CR by adding the structural rules.
It does not really matter here if we add them on both sides (getting an ordinary
multiple-conclusion CR) or only on the Lh.s. (getting a Tarskian CR), since we
get the same single-conclusion fragment in both cases, and so the same symmet-
rical version. Let us call the resulting system FDE. FDE is not a conserva-
tive extension of BS since AA (BV C) => (A A B) V (A A C) is provable in
it, but not in BS. It is well known that Frpg A,---, Ay = By, -+, B, iff
AyNAa A ANA, > By VByV.--VB,isa ‘first-degree-entailment’ of the
standard relevance logics like R (see [3; 18]). Moreover FDE has the following
4-valued characteristic matrix:

VAN
N

where -t = f, = f = t,~L = L, ~T = T, V and A are the lattice operations and
D = {t, T} is the set of the designated values. In fact - FpE I' = A iff whenever

v is 4 valuation in this matrix s.t. v(A) € D for every A € T, we have v(B) € D

for some B € A. : ]

What can we say about %5, =7 According to the above propositions it is closed
under expansion, but not under contraction.or weakening. It has - as an internal
negationand A, V as combining conjunction and disjunction, respectively. Another
important property is the following semantic characterization.
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PROPOSITION 17 F&pp T' = A if for every valuation v in the above four-
valued matrix, either v(A) = f for some A € T, or v(B) =t for some B € A, or
v(A) = T forevery A € TUA orv(A) = v(B) = L for two different occurrences
of formulae A, B of T, A.

Proposition 14 suggests two natural methods of extending ¥ DE. The ﬁ_rst is to
add to it the axioms =4, A => B. This corresponds, in the multiple—conclusmn.ver-
sion, to adding ~A, A = and the structural rules on the right. (Again the r.nultlple-
conclusion version is cut-free and a conservative extension of the Tarskian one.)
The resulting system is, in fact, exactly Kleene’s 3-valued logic (of {t,f,L} and
so has been called K1 in [11]. By Proposition 14 -3, is monotonic, but not closed
under contraction. It is shown in [11] that Ay, ---, A, 5, Biff A1 — (4; —
-+» = (A, — B) is valid in Lukasiewicz’ 3-valid logic Lj. ‘

The second natural addition to F D E is by the axioms = =AVA. Inthe multiple-
conclusion case this corresponds to adding = —A, A as axioms and the structural
rules on the right (again we get a conservative, cut-free version). This time the re-
sulting logic, Pac, is sound and complete w.r.t. the 3-valued logic of {¢, f, T } (also

. known as Js-see [16; 17; 19]). It has the same set of valid formulae as classical

logic, but it is paraconsistent (—p,p ¥ q). b5, is this time closed under contrac-
tion and its converse, but not under weakening. It corresponds to the {—,V,A}-
fragment of the 3-valued logic RM3 [3] in the same way as F%, corresponds to
Lukasiewicz L3 (see [11]). .

By making both additions we get, of course, classical logic. o

Things get more complicated when we add to the language a symmetrical im-
plication. Thus by adding to BS the rules:

'=AA BI'=>A A= A,B
ADB=A I'=>>AADDB
A, -B=A I'=>AA I'=>A,-B

I''-(ADB)=A I'=A,~(ADB)
we get a system, BSI, which does not have property (iii) of ’I.’hco.rem 4, agd not
only sequents of the form A = B are provable in it. BS‘I is still only smglie-
conclusion though. As for g, the best we can tell about it at present is that its
{~,V, A, —}-fragment (where A = B = (A D B) A (—B D -A), as aboye) is
at least as strong as the multiplicative-additive fragment of Linear Logic (without
the propositional constants).

A more significant change is made when we add to BSI the standard struct.ural
rules. Here it does matter whether we do it on both sides or only on the Lh.s., since
the single-conclusion fragment of the system BL which we get by the first option
is a proper extension of the system N~ which we get by the §ccond one. I_n fact,
the purely positive fragment of BL is identical to that of classical logic, while that
of N~ — to the corresponding intuitionistic fragment.}?

11 BT, was introduced, under a different name, in {111, It is investigated and shown to be the logic of



14 ARNON AVRON

Semantically, BL corresponds to the logic we get from {t, f, T, 1} if we define
aDbtobetifa ¢ D,botherwise (see [11). N, on the other hand, corresponds to
Kripke-style structures which are based on this four-valued logic (see, €.g., [34]).
Both systems admit cut-elimination. :

It follows from the propositions above that the symmetrical versions of g1, and
Fn- (F§ and 5, _) are neither monotonic nor closed under contraction, but they
have all the internal and combining connectives (the internal implication is again
-+ as defined above). The {—, A,V, —} fragment of I3, _ is at least as strong as
(and might be identical to) the multiplicative-additive fragment of Linear Logic,
strengthened by the expansion rule and the distribution axiom (i.e. R where con-
traction is replaced by its converse). For % . on the other hand, we have exactly
the same semantic characterization as given in Proposition 17.

‘By adding ~A, A = B as axioms to BL (or, alternatively, ~-A, A =) we again
get the 3-valued logic of {t, f, L}, with the above definition of O. This is exactly
the system LPF of [14] (see also [25; 11]). By adding the same axiom to N~ we
get N (Nelson’s strong system of constructive negation). Semantically, N corre-

- sponds to Kripke-style structures which are based on this 3-valued logic (see, e.8.,
[34]). The symmetrical versions of both systems are now monotonic, but still not
closed under contraction. b} p is shown in {11] to be identical to Lukasiewicz’
3-valued logic. Its internal implication — is; in fact, exactly Lukasiewicz’ impli-
cation. F might correspond to the substructural system BCK of Grishin (see [27;
31] for descriptions and references). ,

In contrast to what happens when we add 74, A => B to N~ and BL, when
~ weadd = 2AV A to both we do get equivalent systems (this is due to the fact that
=(A > B)V(A D B) Fy- ((4 D B) D A) D A, and so we get the full classical
positive fragment). It is more natural, therefore, to work here within the multiple-
conclusion version, where by adding = —A, A instead we get an equivalent cut-
free formulation. The resulting logic is this time the logic of {¢, f, T} (again, with
the above definition of D). This logic was introduced independently in [17; 6] and
[28]. In [17] it is called J3 (see also [19]). Its most important property is that it
is a maximal paraconsistent logic in its language (see [6]), and the strongest in the
family of the paraconsistent logics of da-Costa [16]. Its symmetrical version -5, is
this time closed under contraction and its converse, but it is not monotonic. In [11]
it is shown that it is identical to RMj3-the unique 3-valued extension of RM, and
the strongest logic in the family of relevant and semirelevant logics. Its internal
implication — is this time exactly the Sobociriski implication [32].

Again by making both types of additions to BL or to N~ we get classical propo-
sitional logic.

logical bilattices in [2] (see also [1]). N~ is Nelson’s weak system of constructive negation. This sys-
tem and the full system N (see below) were independently introduced by Nelson (see (S]) and Kutschera
[26]. See [34] for details on both systems.

-
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3 THE SEMANTIC POINT OF VIEW

We turn in this section to the semantic aspect of negation.
A ‘semantics’ for a logic consists of a set of ‘models’. The main property of a

‘model is that every sentence of a logic is either true in it or not (and not both). The

logic is sound with respect to the semantics if the set of sentences which are true in
each model is closed under the CR of the logic, and complete if a sentence  follows
(according to the logic) from a set T' of assumptions iff every model of T'is a model
of . Such a characterization is, of course, possible only if the CR we consider is
Tarskian. In this section we assume, therefore, that we deal only with Tarskian CRs.
For logics like Linear Logic and Relevance logics this means that we consider only
the external CRs which are associated with them (see the Introduction).

Obviously, the essence of a ‘model’ is given by the set of sentences which are
true in it. Hence a semantics is, essentially, just a set S of theories. Intuitively,
these are the theories which (according to the semantics) provide a full description
of a possible state of affairs. Every other theory can be understood as a partial de-
scription of such a state, or as an approximation of a full description. Completeness
means, then, that a sentence ¢ follows from a theory T iff ¢ belongs to every su-
perset of T whichis in S (in other words: iff y is true in any possible state of affairs
of which T' is an approximation).

Now what constitutes a ‘model’ is frequently defined using some kind of alge-
braic structures. Which kind (matrices with designated values, possible worlds se-
mantics and so on) varies from one logic to another. It is difficult, therefore, to
base a general, uniform theory on the use of such structures. Semantics (= a set of
theories!) can also be defined, however, purely syntactically. Indeed, below we in-
troduce several types of syntactically defined semantics which are very natural for
every logic with ‘negation’. Our investigations will be based on these types.

Our description of the notion of a model reveals that externally it is based on two
classical ‘laws of thought’: the law of contradiction and the law of excluded mid-
dle. When this external point of view is internally reflected inside the logic with the
help of a unary connective ~ we call this connective a (strong) semantic negation.

Its intended meaning is that ~A should be true precisely when A is not. The law of .

contradiction internally means then that only consistent theories may have a model,
while the law of excluded middle internally means that the set of sentences which
are true in some given model should be negation-complete. The sets of consistent
theories, of complete theories and of normal theories (theories that are both) have,

therefore a crucial importance when we want to find out to what degree a given

unary connective of a logic can be taken as a semantic negation. Thus complete
theories reflect a state of affairs in which the law of excluded middle holds. 1t is
reasonable, therefore, to say that this law semantically obtains for a logic L if its

consequence relation -, is determined by its set of complete theories. Similarly,

L (strongly) satisfies the law of contradiction iff -, is determined by its set of con-
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sistent theories, and it semanncally satisfiés both laws iff 1, is determined by its
set of normal theories.

The above characterizations might seem unjustifiably strong for logics which are
designed to allow non-trivial inconsistent theories. For such logics the demand that
}-¢ should be determined by its set of normal theories is reasonable only if we start
with a consistent set of assumptions (this is called strong c-normality below). A
still weaker demand (c-normality) is that any consistent set of assumptions should
be an approximation of at least one normal state of affairs (in other words: it should
have at least one normal extension).

It is important to note that the above characterlzatlons are independent of the
existence of any internal reflection of the laws (for example: in the forms ~(=A4 A
A) and ~AVA, for suitable A and V). There might be strong connections, of course,
in many important cases, but they are neither necessary nor always simple.

We next define our general notion of semantics in precise terms.

DEFINITION 18 Let £ be a logic in L and let &1 be its associated (Tarskian) CR.

1. Asetup forlp is a set of formulae in L which is closed undert-. A semantics
Jor k¢ is a nonempty set of setups which does not include the trivial setup
(Le., the set of all formulae).

2. Let S be a semantics for & . An S-model for a formula A is any setup in S
~ to which A belongs. An S-model of a theory T is any setup in S which is a
superset of T. A formula is called S-valid iff every setup in S is a model of
it. A formula A S-follows from a theory T (T I—‘Z A) iff every S-model of T

is an S-model of A. ~

PROPOSITION 19 I-‘Z isa conséquence relation and -, C }-*Z
Note.

1. 1§ is not necessarily finitary even if I is.

2. b is just FS" where S* is the set of all setups.

3. If S; C Sp then F2C 3.

EXAMPLES 20

1. For classical propositional logic the standard semantics consists of the se-
tups which are induced by some valuation in {t, f }. These setups can be
characterized as theories T such that

() ~A€T ffA¢T (i) AABET iffboth A€ T and B €T

(and similar conditions for the other connectives).
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2. In classical predicate logic we can define a setup in S to be any set of for-
mulae which consists of the formulae which are true in some given first-order
Structure relative to some given assignment. Alternatively we can take a setup
10 consist of the formulae which are valid in some given first-order struc-
ture. In the first case -S=F", in the second F5 =", where F* and * are
the ‘truth’ and “validity’ consequence relations of classical logic (see [10]
Jor more details). ’

From now on the following two conditions will be assumed in all our general def-
initions and propositions:

1. The language contains a negation connective —.

2. For no A are both A and ~A theorems of the logic.

DEFINITION 21 Let S be a semantics fora CR -,
1. V¢ is strongly complete relative to S if F3=}.
2. b is weakly complete relative to S if for all A, ¢ A iff I—g A

3. b is c-complete relative to S if every consistent theory of b ¢ has a model
inS.

4. kg is strongly c-complete relative to S if for every A and every consistent T,
THZ AffT b A

Notes:

1. Obviously, strong completeness implies strong c-completeness, while strong
c-completeness implies both c-completeness and weak completeness.

2. Strong completeness means that deducibility in . is equivalent to seman-
tical consequence in .S. Weak completeness means that theoremhood in
(i.e., derivability from the empty set of assumptions) is equivalent to seman-
tical validity (= truth in all models). c-completeness means that consistency
implies satisfiability. It becomes identity if only consistent sets can be satis-
fiable, i.e., if {~A, A} has a model for no A. This is obviously too strong a
demand for paraconsistent logics. Finally, strong c-completeness means that
if we restrict ourselves to normal situations (i.e., consistént theories) then ¢
and I—‘Z are the same, This might sometimes be weaker than full strong com-
pleteness.

The last definition uses the concepts of ‘consistent’ theory. The next definition
clarifies (among other things) the meaning of this notion as we are gomg to use in
this paper.
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DEFINITION 22 Let £ and b be as above, A theory in L is consistent if for no
Aitisthe casethat T bp AandT ‘- —A, complete if for all A, either T -2 A
or T k¢ —A, normal if it is both consistent and complete. CS, CP and N will
denote, respectively, the sets of all consistent, complete and normal theories.

Given ¢, the three classes, CS, CP and N, provide 3 different symactical'ly
defined semantics for ¢, and 3 corresponding consequence relations F¢5, f—%
and ¥ such that F¢SC HY and FEPC Y. Accordingly, we get several notions
of syntactical completeness of }-¢. In the rest of this section we investigate these

relations and the completeness properties they induce.

Let us start with the easier case: that of F¢5. It immediately follows from the
definitions (and our assumptions) that relative to it every logic is strongly c-comp-
lete (and so also ¢-complete and weakly complete). Hence the only completeness
notion it induces is the following:

DEFINITION 23 A logic L with a consequence relation \- ¢, is strongly consistent
ifFgS=

PROPOSITION 24

1. T V%5 A iff either T is inconsistent in L or T ¢ A. In particular, T is
}—CS -consistent iff it is F--consistent, and for a - conszstentT T }-CS A

FThe A

’ 2. L is strongly consistent iff ~A,A V¢ B forall A,B (iff T is consistent
whenever T ¥ A).

We next turn our attention to F¥ and -¥:

DEFINITION 25 Let L be a logic and ¢ its consequence relation.

1. Lisstrongly (syntactically) complete if it is strongly complete relative to C P.

. L is weakly (syntactically) complete if it is weakly complete relative to CP..' A

. Lis strongly normal if itis strongly complete relative to N.

2
3
4. L is weakly normal if it is weakly complete relative to N.
5. Lis c-normal if it is c-complete relative to N.

6

. L is strongly c-normal if it is strongly c-complete relative to N (this is easily
‘seen to be equivalent to }- = }_cs )

For the reader’s convenience we review what these definitions actually mean:

N
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PROPOSITION 26

1. Lisstrongly complete iff whenever T ¥ A there existsa eomplete ertenszon
T* of T such that T* ¥r A

2. Lisweakly complete iff whenever A is not a thearem of L there exists a com-
plete T* such that T* ¥ ¢ A .

3. L is strongly normal iff whenever T ¥ A there exists a complete and con-
sistent extension T* of T such that T* ¥, A.

4. L is weakly normal iff whenever A is not a theorem of L there exists a com-
plete and consistent theory T* such that T* ¥, A. ’

5. L is c-normal if every consistent theory of L has a complete and consistent
extension.

6. L is strongly c-normal iff whenever T is consistent and T ¥1 A there exists
a complete and consistent extension T*-of T such that T* ¥ A. ‘

PROPOSITION 27 If L is finitary then L is strongly complete iff for all T, A and
B: :
() T, AFLB and T,~AVvcB imply Tht.B.

Incase L hasa combmmg disjunctionV so that T, AV B -, C iffboth T, A - C'
andT, Bt C then (x ) is equivalent to the theoremhood of ~A V A.

-Propositions 24(2), 27 and 14 reveal the following interesting connections be-
tween -7 of the previous section and some of the semantic notions introduced here:

PROPOSITION 28 Lett-¢ be Tarskian.
L\ is strongly consistent iff - is monotanic.

2. If¥7 is a conservative extension of - or if - has a combining dzsjunctton
then b= is strongly complete iff 5. is closed under contraction.

3. Under the assumption in (2), & is strongly normal iff % is ordinary.

In Figure 1 we display the obvious relations between the seven properties of log-.
ics which we introduce above (where an arrow means ‘contained in’). In [12] it is
shown that no arrow can be added to it.

The next theorem summarizes the related properties of the main logics studled in
this paper. For proofs we refer the reader to [12]. It should be emphasized that for
Linear Logic, relevance logics, etc. only the associated external CR is considered,
since the notion of semantic negation makes sense only for Tarskian CRs.



