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Series Preface

The science of microbiology owes its existence as well as its underlying
principles to the talent and practical prowess of pioneers such as
Leeuwenhoek, Pasteur, Koch and Beijerinck. Interest in microbiology has
recently increased quite significantly given the exciting developments in
genetics and molecular biology and the growth of microbial technology.
There was a time when most microbiologists were acquainted with many of
the techniques used in microbiology. It is, however, now becoming increas-
ingly difficult for research workers to keep abreast of the bewildering range
of techniques currently used in microbiological laboratories. This problem is
compounded by the fact that scientists in any one field increasingly need to
apply techniques developed in other scientific disciplines.

The series ‘Modern Microbiological Methods’ aims to identify specialist
areas in microbiology and provide up-to-date methodological handbooks
to aid microbiologists at the laboratory bench. The books will be directed
primarily towards active research workers but will be structured so as to
serve as an introduction to the methods within a speciality for graduate
students and scientists entering microbiology from related disciplines.
Protocols will not only be described but difficulties and limitations of
techniques and questions of interpretation fully discussed.

In summary, this series of books is designed to help stimulate further
developments in microbiology by promoting the use of new and updated
methods. Both authors and the editor-in-chief will be grateful to hear from
satisfied or dissatisfied users so that future books in the series can benefit
from the informed comment of practitioners in the field.

MICHAEL GOODFELLOW

XV



Preface

There has been a marked change in outlook in bacterial systematics over the
past 20 years. The application of methods such as numerical and chemical
taxonomy has greatly influenced our views on how bacteria should be
classified and identified. It is, however, the development and application of
nucleic acid based techniques that is revolutionizing current approaches to
the classification, identification and characterization of bacteria. This book
provides a comprehensive, up-to-date treatment of such methods and is
written by specialists who have and continue to make significant contribu-
tions to this field of study.

The book deals with the applications of powerful techniques such as DNA
and small RNA sequencing, gene amplification and DNA fingerprinting to
bacterial systematics. The use of DNA and ribosomal RNA hybridization,
DNA reassociation experiments and nucleic acid probes are fully explained,
and basic methods for isolating and purifying nucleic acids are described in
detail. We sincerely hope that the book will be of great value to microbiol-
ogists and microbial technologists interested in characterizing and identify-
ing bacteria, and that it will encourage more young scientists to develop
their talents in what is now a fascinating and rapidly developing area of
biology.

The editors wish to express their gratitude first of all to the authors, who
did a first class job and who submitted their manuscripts more or less on
time. Thanks are also due to Patricia Sharp, Pru Theaker and Michael Dixon
of John Wiley and Sons, for all of their help and encouragement during the
preparation of this volume.

ERKO STACKEBRANDT
MICHAEL GOODFELLOW



Introduction

Erko Stackebrandt! and Michael Goodfellow?

Department of Microbiology, University of Queensland, St. Lucia,
Queensland 4072, Australia
Department of Microbiology, The Medical School, Framlington Place,
Newcastle upon Tyne, NE2 4HH, UK

A. BACKGROUND

Systematics, the scientific study of the diversity of organisms and their
relationships, is a fundamental discipline that encompasses classification,
nomenclature and identification. Classification or taxonomy is the ordering
of organisms into groups (taxa); nomenclature is the assignment of the
correct international scientific name to organisms; and identification is the
placement of unknown strains into groups derived from classification.
Sound classification is a prerequisite for stable nomenclature and accurate
identification.

Most contemporary bacterial taxonomies are natural in the sense that
they are based on overall resemblance. These taxonomies are sometimes
called phenetic classifications since they are derived from similarities and
differences in phenotypic features. In contrast to ‘phylogenetic’, the word
‘phenetic’ does not have any evolutionary implications, except within the
context of showing the end product of evolution. Phylogenetic classifica-
tions are expressions of the evolutionary relationships between organisms.
They reflect the degree of change in evolutionary lines.

There is no choice but to classify, identify, and name. At a purely
practical level, microbiologists need to know what organisms they are
working with before they can pass on information about them. An organ-
ism’s name is the key to its literature, that is, an entry to what is known
about it. For bacteria, this knowledge has traditionally been acquired using
experimental and observational techniques since biochemical, chemical

Nucleic Acid Techniques in Bacterial Systematics. Edited by E. Stackebrandt and M. Goodfellow
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XX Introduction

and physiological properties are usually required, in addition to morpho}o—
gical features, for the description of taxa. The practical value of taxonomies
is shown by how they stand the test of time. Those found wanting will
soon be ignored, modified or superseded by better classifications.

The basic unit in systematics is the species. A bacterial species can be
considered as a group of strains defined more or less subjectively by
criteria chosen by the taxonomist to show to best advantage and as far as
possible put into practice an individual’s concept of what a species is
(Cowan, 1978). The number of species in a genus is influenced by the aims
of the taxonomist and the criteria adopted to define species. There is no
official or generally accepted definition of the term species in bacteriology.
It can, however, be useful to distinguish a taxospecies, a group of strains of
high mutual similarity, from a genospecies, a group of organisms capable of
genetic exchange, and both of these from a genomic species, a group
showing high DNA-DNA homology values. By assuming similarity be-
tween species, they may be arranged into genera, which may, in turn, be
fused into higher taxa (e.g. families) until the whole range of variation is
accounted for in the hierarchical system. '

For practical reasons, classifications and nomenclature should remain
stable. Changes can create confusion, particularly at genus and species
level, and cause expensive modifications of identification procedures.
Nevertheless, by their very nature, classifications tend to be transitory as
they cannot always be modified to accommodate new information. Tax-
onomists would be failing in their duty if they were not to compile, for the
benefit of the whole microbiological community, an information storage
and retrieval system to reflect at any one time the current state of know-
ledge.

I-?istorically, bacterial classifications were generated primarily for the
purposes of identification. Organisms were assigned to groups based on
morphology, staining properties, pigmentation, the presence or absence of
spores, nutritional requirements, the capacity to produce acid from sugars,
and the ability to grow in the presence of inhibitory compounds. In other
words, they were derived very largely on behavioural properties of strains.
This approach was practical since it was founded on characters that were
easy to study and yielded information on what organisms did. Thus, early
taxonomies were based on data relevant to the part played by bacteria in
disease, food spoilage and soil fertility. However, the overreliance placed
on small numbers of subjectively chosen properties, led to serious misclas-
sification and dependence on inadequate characters for identification pur-
poses (Goodfellow and Dickinson, 1985).

Introduction Xx1

B. THE NEW SYSTEMATICS

Bacterial systematics has undergone revolutionary change in the past thirty
years. A subject once widely perceived as boring and esoteric has devel-
oped into an exciting and rapidly developing scientific discipline that is
changing our views on how bacteria should be classified, identified and
characterized. The importance of the new bacterial systematics is recog-
nized by microbial technologists searching for new products (Goodfellow
and O'Donnell, 1989), clinical bacteriologists requiring improved identi-
fication and typing methods (Hawkey, 1989), and microbial ecologists
monitoring the impact of the release of genetically engineered microorgan-
isms on the indigenous microflora in natural habitats (Jain et al., 1988). The
beginning of this new era in bacterial systematics can be traced back to the
introduction and application of new taxonomic concepts and techniques in
the late 1950s and 1960s. Particularly important advances were derived
from the use of chemical, numerical and molecular taxonomic procedures
(Goodfellow and Minnikin, 1985; Goodfellow et al., 1985).

Chemosystematics, or chemical taxonomy, is a rapidly expanding disci-
pline in which information from chemical analyses of whole organisms or
cell fractions is used for classification and identification, and for tracing
evolutionary trends. Chemical features are increasingly being used to
describe and separate bacteria, notably actinomycetes (Williams et al.,
1989). A wide array of chemical methods are now used to determine DNA
base, lipid, wall amino acid and sugar, and whole-organism protein com-
position (Goodfellow and Minnikin, 1985; Gottschalk, 1985). In addition,
rapid epidemiological typing of clinically significant bacterial pathogens
can be achieved by the application of pyrolysis mass spectrometry (Free-
man et al., 1990).

Conventional numerical taxonomy has been the most effective method
used to establish relationships below the genus level (Goodfellow and .
Dickinson, 1985; MacDonell and Colwell, 1985). In essence, numerical
classification involves the generation of large data bases for many organ-
isms, which are grouped into clusters (taxospecies) on the basis of shared
similarities. Initially, all characters are given equal weight and, after repro-
ducibility testing, used to generate probability matrices for the numerical
identification of fresh isolates (Williams et al., 1985). This approach is in
sharp contrast to traditional practice in bacterial taxonomy, as taxa are
defined and recognized using many equally weighted features, not on a
small number of subjectively chosen behavioural, morphological and stain-
ing properties. Numerical classifications are based on phenetic data so that
affinities between strains, and the hierarchies built upon them, are entirely
phenetic.
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It soon became apparent that reliable phylogenetic classifications of
bacteria were not feasible using chemotaxonomic and numerical taxonomic
methods. Reliance on chemical, morphological and physiological prop-
erties resulted in the assignment of bacteria to suprageneric groups, many
of which were subsequently shown to be heterogeneous (Goodfellow,
1989). Indeed, it was only with the introduction of nucleic acid studies that
suprageneric classification became a reality. .

Johnson (1989) outlined several of the advantages to be gained by basing
classifications on genomic relatedness:

(@) A more unifying concept of a bacterial species is possible.

(b) Classifications based on genomic relatedness tend to be stable, that is,
they can accommodate new information. .

(c) Reliable identification schemes can be prepared once organisms have
been classified on the basis of genomic relatedness.

(d) Information can be obtained that is useful for understanding how
various bacterial groups have evolved and how they can be classified
according to their ancestral relationships.

The purpose of this book is to provide details of the experimental
procedures that are currently being used and developed to derive informa-
tion from nucleic acids for the classification, identification and typing of
bacteria. All such investigations start with the isolation of deoxyribonucleic
acid (DNA) and/or ribonucleic acid (RNA). Some of the methods used to
overcome problems associated with the isolation of DNA are considered in
Chapter 1. This contribution also includes protocols for the isolation of
DNA and RNA.

C. CLASSIFICATION: HYBRIDIZATION AND SEQUENCING
STUDIES

The measurement of the extent to which single-stranded DNA fragments
from one bacterial strain reassociate or hybridize with single-stranded
DNA from another strain has been used to determine nucleic acid se-
quence similarity or DNA homology. Experience over the last three de-
cades has shown that DNA-DNA reassociation data are mainly relevant
when investigating relationships within and between bacterial species.
Generally, bacteria within the same genomic species have DNA homology
values above 70% (Wayne et al., 1987), although the exact level below
which organisms are considered to belong to different species varies
(Zakrzewska-Czerwinska et al., 1988). DNA reassociation experiments

Introduction

have helped to clarify relationships between many bacterial genera
(Schleifer and Stackebrandt, 1983), but much remains to be done. Specific
procedures recommended for the estimation of DNA homology values
have been described (Johnson, 1985; Owen and Pitcher, 1985). The nature
of reassociation and hybridization reactions and a comparison of the
techniques used are given in Chapter 2.

Determination of relationships by measuring the extent of binding be-
tween ribosomal (r) RNA and rDNA cistrons is also an established method
that has been used to unravel affinities between major prokaryotic groups.
Comparisons can readily be made between nucleotide sequences of rRNA
preparations from diverse taxa (De Smedt and De Ley, 1977; Schleifer and
Kilpper-Bilz, 1987) as the base sequences of rRNA cistrons are more highly
conserved than most of the genes forming the bacterial genome (Doi and
Igarashi, 1965; Dubnau et al., 1965; Moore and McCarthy, 1967). Ribosomal
RNA-DNA pairing procedures have not been as extensively applied as
DNA-DNA homology techniques but even so over 1000 representatives of
350 archaebacterial and eubacterial species have been examined in the past
twenty years (Stackebrandt, 1988). The method has had an impact on the
rearrangement of many genera, notably in the classification of Gram-
negative bacteria (De Vos et al., 1989). The principles underlying the most
successfully used rRNA-DNA pairing techniques are considered in Chap-
ter 3 together wtih some developments designed to facilitate isolation,
labelling and hybridization procedures.

The major breakthrough in determining the evolution and phylogeny of
prokaryotes came with the introduction of rRNA sequencing techniques.
Initially, ribosomal cataloguing provided the most exacting way of detect-
ing phylogenetic relationships amongst prokaryotes (Fox et al., 1980; Fox
and Stackebrandt, 1987). The period between the rise (Fox et al., 1977) and
decline (Lane et al., 1985) of this technique saw revolutionary advances in
bacterial phylogeny. Particular credit needs to be given to those who
developed the general principles underlying the technique (Sanger et al.,
1965; Silberklang ef al., 1979), and to those who recognized its potential for
elucidating phylogenetic relationships (Woese et al., 1975; 1990a,b; Woese,
1987).

It has become evident that Gram-negative and Gram-positive bacteria
are phylogenetically distinct, and that the latter form a phyletic line which
divides into two branches that can be distinguished by DNA base composi-
tion (Stackebrandt and Woese, 1981). The actinomycete-coryneform bacte-
rial line, which includes bacteria with a guanine (G) plus cytosine (C)
content above about 55mol%, can be separated from the low G+ C
content (below 50 mol%) Bacillus—Clostridium—Streptococcus branch. Several
taxa previously associated with the actinomycetes clearly belonged to this
second evolutionary branch. The genus Eubacterium is phylogenetically
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related to Clostridium, Kurthia to lactic acid bacteria, and Thermoactinomyces
to the Bacillaceae (Tanner et al., 1981; Stackebrandt et al., 1987). The
cataloguing approach also led to the discovery of a third urkingdom
(Woese and Fox, 1977), highlighted the existence of complex, structured
ancient main lines of descent (Balch et al., 1979; Woese et al., 1985) and
showed that phenotypic traits such as morphology were poor phylogenetic
markers (Stackebrandt and Woese, 1981; Woese et al., 1982; Stackebrandt et
al., 1988). ’

The need to extend these early studies to 235 rRNA and to obtain more
information from 165 rRNA led to the development of reverse transcriptase
sequencing of IRNA (Qu et al., 1983; Lane et al., 1985) and to the analysis of
cloned rDNA Taq amplified by polymerase in the polymerase chain reac-
tion (PCR, Saiki et al., 1988). Protocols for RNA purification, reverse
transcriptase sequencing, a compilation of eubacterial 165 and 235 rRNA
sequence and amplified primers, and a number of previously unpublished
165 TRNA sequences are given in Chapter 6. Phylogenetic trees can also be
generated from 55 rRNA sequence data (De Wachter et al., 1985; Hori and
Osawa, 1986; Dams et al., 1986; Van Den Eynde et al., 1989). Procedures for
the rapid sequencing of 55 rRNA are described in Chapter 5.

The reverse transcriptase technique, a rapid and relatively easy way to
determine rRNA sequences, will continue to be useful, as it samples
populations of rRNAs actually transcribed and found in cellular ribosomes.
It seems likely, however, that the PCR will replace standard methods for
cloning and sequencing of DNA and RNA genes given its technical
simplicity, speed and sensitivity to small amounts of DNA. The basis of the
polymerase chain reaction mechanism; its application in microbial syste-
matics and ecology, and comprehensive protocols for would-be practition-
ers are described in Chapter 7. Similarly, protocols for sequencing con-
served DNA genes are given in Chapter 4.

The introduction and application of more powerful sequencing and
related techniques of molecular biology will further facilitate the generation
of molecular data for characterization and taxonomic purposes. The resul-
tant information explosion will necessitate comparable advances in tree-
building methods and in determining the accuracy and reliability of phylo-
genetic trees. Current discrepancies between topographies of phylogenetic
trees derived from data acquired from one or two molecules need to be
explained as do the strengths and weaknesses of using information from
different nucleic acid species. Some of the present problems in deriving
phylogenies can be attributed to unbalanced strain selection, but other
factors include dependence on different data handling techniques and
working hypotheses (Felsenstein, 1988; Olsen, 1988; Sneath, 1989). A brief
description of the ways in which sequence data are handled is given in
Chapter 10 together with a combination of some of the methods available
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for tree construction, and a consideration of why it is difficult to recon-
struct trees accurately.

D. IDENTIFICATION: PROBES AND TYPING

The advances in molecular biology and gene technology have been used to
develop improved methods for rapid identification and typing of micro-
organisms, notably bacterial pathogens. The new diagnostic methods are
based on the molecular structure and specific characterization of nucleic
acids, particularly of DNA.

It is now commonplace to detect specific fractions of DNA in bacteria by
DNA hybridization. Labelled DNA probe is first denatured and then
allowed to react with denatured unlabelled DNA from test bacteria. The
unlabelled test DNA is usually obtained by lysing bacterial colonies on a
filter. The labelled DNA probe binds to any complementary DNA sequence
fixed on the filter. Bound DNA is detected from washed preparations by
autoradiography or by some other reaction appropriate to the labelling
used. The essential step is to prepare a DNA probe that will detect DNA
sequences from the target organism but not from other bacteria. Similarly,
rRNA probes can be designed to detect taxa at higher levels in the
taxonomic hierarchy.

Nucleic acid probes have been prepared for bacterial identification (Che-

verier et al., 1989; Groves and Clark, 1987; Kuczak and Mordarski, 1989),
for the detection and identification of bacteria in mixed microbial com-
munities (Stahl et al., 1988), and for the identification of single cells (De
Long et al., 1989). The theoretical and experimental considerations under-
lying the development and application of nucleic acid probes are consi-
dered in Chapter 8. The latter part of this contribution focuses on the use of
rRNAs as targets for nucleic acid probes.
) The detection of bacterial subspecies and biotypes is assuming greater
importance not only for epidemiological and environmental studies but
also for rapid and accurate characterization of patent and production
strains. Cleavage of chromosomal DNA by a restriction enzyme and
visualization of bands obtained after electrophoretic separation, restriction
endonuclease analysis, have been used to good effect in epidemiological
typing (Kuijper et al., 1987; Renaud et al., 1988), especially where conven-
tional markers have been shown to be inadequate. Methods used to
prepare genomic DNA for restriction analysis are given in Chapter 9, as are
protocols for the electrophoresis of DNA restriction fragments. The value
of DNA and RNA restriction patterns in molecular taxonomy and epide-
miology are also covered.



XXVi Introduction .

E. RECONCILIATION OF APPROACHES TO BACTERIAL
SYSTEMATIES

Bacterial systematics, which began as a largely intuitive subject, has be-
come increasingly objective with the introduction and application of new
taxonomic methods, notably the molecular methods considered in this
book. These developments have led to the generation of improved taxono-
mies, the adoption of changes in nomenclature, and better identification
procedures. It has become established that DNA-DNA hybridization is the
gold standard for the designation of bacterial species, and a molecular
definition of species has been recommended (Wayne et al., 1987). It is also
accepted that nucleic acid sequencing and hybridization studies currently
provide the only sound basis for determining phylogenetic relationships
among all bacteria.

The need to reconcile traditional and molecular approaches to bacterial
systematics is of vital importance (Murray et al., 1990; Wayne et al., 1987).
These workers consider that classification and nomenclature should agree
with and reflect genomic relationships as far as possible and that all
preconceived notions need to be re-examined within this context. They
also recommend that distinct genomic species that cannot be separated
from other genomic species on the basis of any known phenotypic prop-
erty should not be named until some differential phenotypic property has
been highlighted. Indeed, the integrated use of phylogenetic and pheno-
typic characters, that is, polyphasic taxonomy (Colwell, 1970), is consi-
dered necessary for the delineation of taxa at all levels from genus to
kingdom. This means that descriptions of new genera should, wherever
possible, include either sequencing or hybridization data. It is also desir-
able that all sequences from which phylogenetic and taxonomic conclu-
sions have been derived should be published or accessible through data
banks.

It can be expected that developments will continue to be made in the
exciting field of molecular classification and identification. It is to be hoped
that the strategies and working schemes included in this book will allow
beginners to contribute to the new bacterial systematics.
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A. INTRODUCTION

If there are any constants in the phylogenetic studies of nucleic acids, the
isolation of the nucleic acids might be a candidate. All such investigations
start with the isolation of deoxyribonucleic acid (DNA) and/or ribonucleic
acid (RNA). Also, a lot more time is probably spent just isolating the
nucleic acids than doing the interesting experiments. The isolation of
nucleic acids can be considered as a scientific practice, but at times it seems
to approach an art. As a result, there have been published many variations
of a few basic methods. Some of the problems that have spurred the
development of better isolation methods include the time involved, loss of
DNA during the isolation process, contamination with polysaccharides
and other cellular components, difficulties with cell disruption, and the
degradation or partial degradation of the DNA or RNA.

The purpose of this chapter is to review some of the DNA isolation
problems and the approaches that have been used by various investigators
to solve them. Also some protocols for the isolation of DNA and RNA are
included.

B. GROWTH AND CELL LYSIS

(i) Growth conditions and culture age

The usually rapid growth rates of bacteria, relative to other organisms, are
of great advantage for the quick generation of cell material. However, the
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growth curves of bacteria vary greatly and must be considered in the DNA
or RNA isolation strategy.

The medium of choice will be one that provides the best growth rate and
extent of growth for a given group of organisms. Generally for chemo-
heterotrophs, a peptone-yeast extract base medium supplemented with an
energy source, usually glucose, and a buffer system suffice. We have
found that a 50 mM potassium phosphate buffer (pH 7.0) works well for
many of the anaerobic bacteria and it is rélatively inexpensive. Media for
facultatively anaerobic and aerobic organisms may not require buffering if
a minimal amount of acidic end products is produced.

The oxygen requirement is also an important consideration. Anaerobic
bacteria usually grow well in freshly prepared medium, with a nitrogen-
filled head space (Cummins and Johnson, 1971; Holdeman et al., 1977). The
CO; requirements of those that need it can readily be supplied by the
addition of a sterile sodium bicarbonate solution at the time of inoculation
(Holdeman et al., 1977). Mixing of anaerobic cultures (by stirring bar or
gentle shaking) may also be important, especially for non-motile organisms
where the cells may tend to settle out. Facultative anaerobic organisms
are usually grown under aerobic conditions (shaking) where less acidic
fermentation by-products are produced. It is in fact very difficult to
maintain aerobic conditions because removal of oxygen from the medium
is more rapid than the absorption of oxygen from the atmosphere. This
exchange is optimized by using small volumes of medium per flask (for
example 250 ml per 2-liter flask), flasks with fluted walls, and fast shaking
rates (for rotary shakers, 250-450 rpm). It is probably most difficult to
supply the correct oxygenation levels to microaerophilic organisms. Here
the medium is first equilibrated with a mixture of air and CO, and this
mixture is supplied to the culture during growth (Smibert, 1981; Thompson
et al., 1988).

Early stationary stage is the preferred time for harvesting a culture, since
at this point the extent of growth is near maximum and cell death is still at a
minimum. The attention that one must give to the growth curve will
depend on the organism. For many organisms, the cultures are rather
stable in the stationary phase, such that an overnight or 24-hour culture
will work fine. For other organisms, for example, some of the clostridia
where they may switch into a sporulation mode, the DNA and RNA can go
from being intact to essentially gone within a 1-3 hour period. Rapidly
dividing Gram-positive cells tend to be more susceptible to lytic enzymes
than stationary cells because the muramic acid content is lower in the
growing zone of the cell. One also has to be careful about what appear
to be slow-growing organisms. Some really do grow very slowly, for
example, many mycobacteria. In other cases, apparent slow growth may
really be just a low viable population density, where cells are continually
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dying and there is a linear build up of non-nucleic acid-containing cell wall
debris.

(ii) Cell disruption

The disruption of the bacterial cells can be a very frustrating technical
problem, and at times it has perhaps dictated whether or not a group of
organisms was investigated. Methods for disrupting cells include the
addition of detergents, digestion with lytic enzymes, and physical dis-
ruption in some form. To make cells more susceptible to lytic enzymes,
growth in the presence of antibiotics that inhibit cell wall synthesi§ and
growth in the presence of cell wall component analogs, such as glycine or
threonine, have been used.

1. Gram-negative bacteria

Although many Gram-negative bacteria will lyse in the presence of
detergents only, others may lyse only partially or not at all. A preliminary
incubation of the cells in the presence of lysozyme, which is an endoacetyl
muramidase isolated from egg white, will provide much more uniform
lysis. The enzyme is inhibited by high salt concentrations; therefore a
suspending buffer consisting of 50 mM Tris-hydrochloride (pH 8.0), 1 mM
sodium ethylenediaminetetraacetate (EDTA) and 0.25M sucrose can be
recommended. The sucrose stabilizes the resulting spheroplasts until the
addition of the lysing detergent.

2. Gram-positive bacteria

There are several enzymes available for rendering Gram-positive bacteria
susceptible to lysis with sodium dodecyl sulphate (SDS). In addition to
lysozyme, which is the most commonly used, these are: N-acetyl-
muramidase, isolated from Streptomyces globisporus, which also cleaves the
muramic acid backbone; lysostaphin, an endopeptidase isolated from
Staphylococcus sp. K-6-W1, which is specific for the cross-linking peptides of
other staphylococci; and achromopeptidase, a peptidase isolated from
Achromobacter lyticus, which is also active on the cross-linking peptides.
‘(a) Lysozyme. We routinely use the same suspending buffer as for the
Gram-negative organisms. The suspended cells can be concentrated 10-50-
fold, depending on the amount of cell material. Add 1-3 mg/ml lysozyme
and incubate at 37°C until the cells are susceptible to lysis by the detergent.
Test for this by taking out small samples at various times and adding the
lysing reagents in the proper ratios (see below for the various procedures).



