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I. INTRODUCTION

This chapter surveys the reactivities of halides
and oxyhalides of the early transition series 2titan—
ium, vanadium, and chromium subgroups) and rheﬁium in
nonaqueous media, and it is shown that these systems
undergo a fascinating variety Qf reactioﬁé‘with a wide
range of donor molecules. We éhall'devote most of our
attention to the chlorides,'bromideé, and iodides be-
cause these are the halides that generally exhibit the
greatest variation in behavior. Fluorides are briefly
mentioned, but since they have been the subject of )
several review articles in recent years (25, 518, 584)
we discuss only a few select examples. dealing with the
more recent and ihportant aspects of their reactivity.

In view of the wealth of data now gvailable in the
literature, no attempt is made to present a compre-
hensive 1iterature‘review. Rather, examples have been
chogen to illustrate specific reactivity patterns and
trends.

There are three main reasons for restricting this
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chapter to the halides of titanium, zirconium, hafnium,
vanadium, niobium, tantalum, chromium, molybdenum,
tungsten, and rhenium. First,.many of the halides and
oxyhalides of groups IV} v, VI show a marked sensi-
tivity toward oxygen and moisture and consequently
require similar handling techniques. This sensitivity
in turn reflects both the lability of the'metal—halogen
bond to solvolysis and the tendency of these metals to
form strong metal-oxygen bonds via oxygen insertion.
reactions involving the halides. Secoﬁd, it is in
this area of the periodic table that chlorine and bro-
mine stabilize a wide range of oxidation states for
certain of the trahsition- elements. For example,
" molybdenum forms chlorides in all the oxidation states,
ranging froﬁ VI to.Il; these compounds are weil char-
acterized end their reactivities have beenAextensively
studied. Likewise, the oxychlorides MoO,Cl,, MoOCl,,
MoOCl3, MoOCl,, and MoOCl are all well documented. On
the other hand,'related chlorides and oxychlori@esAof
the other transition elements (e.g., the platinum
metals) are much more limited, many are poorly cher—
acterized, and often they show little reactivity.
Thus we have an opportunity to follow reactivity trends
in closely related series of halides as the oxidation
state is changed. . _ ’

Finally, it is apparent that change in the oxida-

tion state of a metal halide is accompanied by striking
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structure changes. There is indeed a; intrigﬁing
diversity of structure types, ranging from simple
monomeric TiCl, and WClg to polynuclear cluster hal-
ides such as Nb3Clg, MogCljs, and NbgCljy. The rela-
tionships between structure and reactivity are pargicu—i
larly interesting, and are one of the aspects covered
in this chapter. 1In view of the close similarity of
the chemistry of the rhenium halides to those of
molybdenum and tungsten, it is appropriate for us to

include- the halides of rhenium in -this review.
A. General Considerations

Most metal halides have polymeric structures in the
solid and liquid states, but several are monomeric
(e.g., TiCly, VCly, WFg, WClg) and others are of the
cluster type, wherein a fimite number of metal atoms
are held together by metal-metal bonds. If ﬁe define
the latter class of compounds along the lines proposed
by Cotton (180), as "those cdntaining a finite group
of metal atoms which are held together entirely, .
mainly, or at least to a significant extent, by bonds
directly between the metal atoms even though some non-
metal atoms may be associated intimately with the
cluster," then we’can conveniently classify metal hal—
ides as being of the q}uéter type or otherwise. Since
certaigiieactivity differences exist betweeq‘these two
general structural classes, let us discuss fhemTSep—

arately. Tables I to III list the halides that are
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pertinent tc this chapter; Tables I and II contain the
halides and oxyhalides that do not possess cluster
structures, whereas Table III lists the halide phases
that do. No oxyhalides are yet known to possess a
cluster structure. '

Since we do not intend to describe in detail the
preparations of the halides, reference is made to the
texts by Colton and Canterford (118, 166), and several
recent review articles (176, 218, 271, 292) that sur-
vey the synthetié routes available for the preparation
of many of these halides and oxyhalides; these arti-
cles also contain most of the pertinent literature
references. ; | |

The var;ety of mixed halides and oxyhalides which

are known do not appear in Tables I and II, princi-~
pally because for the most part their feactivities
have not been thoroughly investigated. However, it is
important to realize that they can be readily prepared
and, although their existence is not particularly
remarkable, many are rather interesting species.
Among the mixed halides and othalides that have re-
cently been prepared are [MCl,F5_,] (M = Nb or Ta)
(439, 525), cis- and trapns-WC1l,F, (341), MoBrF, (484),
TiBrF3 (446), WOBrCly (69), WOBr,Cl,, and WyOpBraClg
(427).

There are generally numerous methods available for

the synthesis of the oxyhalides listed in Table II
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TABLE III

Anhydrous Cluster Halides of the Early
Transition Series and Rhenium

. Niobium Tantalum
NbgF 5
Nb3Clg, NbgCliy TagClys, TagClyy
Nb3Br3 TagBris, T@sBrlq
Nb3Ig, NbgIjj TagIy
Molybdenum Tungsten
MogCl,» WSCiIB' WgClis
' a
MogBrj, WgBryg, WgBrig, WgBriyy, WgBrysp
MogIy2 Welis, WgIyz
Rhenium
Re3Clg
Re3Brg
Rejlq

®rwo different clusters have this composition, namely,
[WgBrg]Bry (Bry)y /2 and [WgBr),1Brg.

(218) ; these procedures range from the halogenation of
the oxides to the carefully controlled reaction of the
halides with oxygen and oxygen-containing compounds.
Equations 1 through 10 illustrate several such prepar-
‘ative routes which have been used to prepare certain
representative oxyhalides.

(Refs. 169, 170) MO3 + socl, —SE1YX woca,

where M = Mo or W (1)
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ca. 250-300°C

. + +
(Ref. 169) Mo + Brp + 0Oj Flow system MoOyBr, (2)
temperature
. - 3
(Ref. 613) W + 2WO3 +3I) gradient 3WO,I- (3)
reflux
(Ref. 229) WOz + CCly -~ g WOCly (4)
- temperature
. . - 3w 5
(Ref. 614) 2W + WO3 + 4.5Br, gradient OBrg3 (5)
(Ref. 254) MoClg + liguid SO, ——e==MoOOCl3
(Ref. 305) WClg + liquid SO; ——m= WOC1, (6)
(Ref. 212)  2WXg + WOy —oaled tuwbe  ox.,
WX + 2woy Sealed tube  Lun %, (7)
where X = Cl or Br
(Refs. 209, 3MXs5 + Sbp03 —==3MOX3 + 2SbXj (8)

485) where MXg = WCls, WBrg, MoClg, or TaCls

(Ref. 260)  3TiCly + Asp03 —=3TiOCl, +2AsCly (9)

(Refs. 216, MCl, + gaseous Cl,0 and/or
5 .
22) C120/CCLly, ——em= MOC1, (10)

where M = Ti, 2r.

The oxygen-abstraction reactions represented in
Egs. 6 through 10 demonstrate the ease with which
transition metal halides in this area of the ?eriodic
table will abstract oxygen from a variety of simple
oxygen-containing reagents. This behavior is quite

general and, as we later see, it is also observed in
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the reactions of several of these halides in oxygen-
containing nonaqueous solvents. The high metal-
oxygen bond energies are clearly the driving force in
such reactions. ‘However, although Egs. 1 to 10 repre-
sent fairly general preparative procedures there are,
as might be expected,vmany exceptions to the rules.
Thus ReClg does not react with liquid sulfur dioxide
to give ReOClj3 (260), and vanadium(IV) chloride gives
a mixture of VClj and VOClj, rather than the expectéd
voCcl, (232). Both halides and oxyhalides can exhibit
polymorphism, and this may account for differénces
between halides and oxyhalides prepared by different
routes. Thus a purPle-black oxyhalide believed to be
WOCl, has been pfepared by thermal decomposition of
WOClj (209, 483)

2woc13’.——A—- WOCl, + WOC1, (11)

This same halide, nevertheless, has been reported to
be prepared as golden—brown‘cfystals by the stannous
chloride reduction of WOCl,, followed by sublimation
at 500°C (267), and by the reaction

W + WO3 + WClg —sm= 3WOC1, (12)

from which WOCl; can be obtained in crystalline form
by chemical transport (616). X-Ray powder diffraction
data for these various products are not in particu-
larly good agreement (209, 267, 616), although.it has
been claimed (209, 483, 616) that WOCl, and MoOCl, (561)



