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Added Preface

In the third printing, several errors have been corrected. In particu-
lar, the previous erroneous construction of the splitting in the Homol-
ogy classification theorem (Theorem III,4.3) has been replaced by a
correct proof, due essentially to DOLD (A. DOLD, Lectures on Algebraic
Topology, Grundlehren der mathematischen Wissenschaften, vol. 200,
Springer 1972). Also, the axioms on page 260 for allowable short exact
sequences have been modified, so that they will actually apply where
they are used on page 376.

SAUNDERS MACLANE
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Introduction

Our subject starts with homology, homomorphisms, and tensors.

Homology provides an algebraic “picture” of topological spaces,
assigning to each space X a family of abelian groups Hy(X), ..., H,(X),
..., to each continuous map /: X —Y a family of group homomorphisms
fo:H,(X)—>H,(Y). Properties of the space or the map can often be
effectively found from properties of the groups H, or the homomorphisms
f.- A similar process associates homology groups to other Mathematical
objects; for example, to a group I7 or to an associative algebra A. Homo-
logy in all such cases is our concern.

Complexes provide a means of calculating homology. Each n-dimen-
sional “singular” simplex T in a topological space X has a boundary
consisting of singular simplices of dimension 2 —1. If K, is the free
abelian group generated by all these n#-simplices, the function 2 assigning
to each T the alternating sum 8T of its boundary simplices determines a
homomorphism 9: K, —K,_;. This yields (Chap.II) a “‘complex’ which
consists of abelian groups K,, and boundary homomorphisms 9, in the
form

0Kyl K, S K, S Ky

Moreover, 29=0, so the kernel C, of 2:K,—K,_, contains the image
oK,,,. The factor group H,(K)=C,[eK,,, is the n-th homology
group of the complex K or of the underlying space X. Often a smaller
or simpler complex will suffice to compute the same homology groups for
X. Given a group 11, there is a corresponding complex whose homology
is that appropriate to the group. For example, the one dimensional
homology of I7 is its factor commutator group JZ/[17, IT].
Homomorphisms of appropriate type are associated with each type
of algebraic system; under composition of homomorphisms the systems
and their homomorphisms constitute a ‘‘category’” (Chap.I). If C and
A are abelian groups, the set Hom{(C, A) of all group homomorphisms
f:C—A is also an abelian group. For C fixed, it is a covariant “functor”’
on the category of all abelian groups 4; each homomorphism a:4—A4"'
induces the map a,:Hom(C,A) ->Hom(C, A’) which carries each f into
its composite o f with a. For A fixed, Hom is contravariant: Each
y:C’—C induces the map y* in the opposite direction, Hom(C, 4) -
Hom(C’, 4), sending f to the composite fy. Thus Hom(?, 4) applied



2 _ Introduction

to a complex K=? turns the arrows around to give a complex
Hom(K,,4) & Hom(K,, 4) 22 Hom(K,, 4) — ---.

Here the factor group (Kernel *)/(Image 8*) is the cohomology H" (K, A)
of K with coefficients 4. According to the provenance of K, it yields
the cohomology of a space X or of a group I7.

An extension of a group A by a group C is a group BYA with BfA=C;
in diagramatic language, an extension is just a sequence

EQ>A—>B->C-0

of abelian groups and homomorphisms which is exact in the sense that
the kernel of each homomorphism is exactly the image of the preceding
one. The set Ext!(C,A4) of all extensions of 4 by C turns out to be an
abelian group and a functor of 4 and C, covariant in 4 and contra-
variant in C.

Question: Does the homology of a complex K determine its cohomo-
logy ? The answer is almost yes, provided each K, is a free abelian group.
In this case H"(K,A) is determined “up to a group extension” by
H,(K), H,_,(K), and 4; specifically, the ‘‘universal coefficient theorem”’
(Chap.III) gives an exact sequence

0 —Ext!(H,_,(K),A) — H*(K, A) - Hom (H, (K), 4) -0

involving the functor Ext! just introduced. If the K, are not free groups,
there is a2 more complex answer, involving the spectral sequences to be
described in Chap. XI.

Tensors arise from vector spaces U, V, and W and bilinear functions:
B(u,v) on UxV to W. Manufacture the vector space U®V generated
by symbols w@v which are bilinear in ucU and ve¢V and nothing
more. Then #®v is a universal bilinear function; to any bilinear B
there is a unique linear transformation T:UQV—»>W with B(x,v)=
T'(4 @v). The elements of V@V turn out to be just the classical tensors
(in two indices) associated with the vector space V. Two abelian groups
A and G have a tensor product A @G generated by bilinear symbols
4@g; it is an abelian group, and a functor covariant in 4 and G. In
particular, if K is a complex, so is A QK:A @Ky A QKye----.

Question: Does the homology of K determine that of A QK?
Answer: Almost yes; if each K is free, there is an exact sequence
0>4Q@H,(K)>H,(A QK)->Tor(4,H,_,(K)) —>o0.

Here Tor; (A,G) is a new covariant functor of the abelian groups 4 and
G, called the ‘‘torsion product’; it depends (Chap.V) on the elements
of finite order in 4 and G and is generated, subject to suitable relations,
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by pairs of elements a€ 4 and geG for which there is an integer m with
ma=0=mg.

Take the cartesian product X><Y of two spaces. Can we calculate
its homology from that of X and Y ? A study of complexes constructed
from simplices (Chap. VIII) reduces this question to the calculation of
the homology of a tensor product K @L of two complexes. This cdlcu-
lation again involves the torsion product, via an exact sequence (the
Kiinneth Thm, Chap.V)
0—> ) Hy(K)@H,(L)>H,(KQL)—~ 2 Tor,(H,(K), H,(L)) 0.

Pte=n p+e=n-1

But woe, if A is a subgroup of B, 4 @G is not usually a subgroup
of B®G; in other words, if E:0—+A4 — B —»C—0 is exact, the sequence
of tensor products

0>-ARQRG+BRG>CRG—0,

is exact, except possibly at 4 @G. Happily, the torsion product repairs
the trouble; the given sequence E defines a homomorphism E,, : Tor, (C,G)
—+A @G with image exactly the kernel of A @G —>B®G, and the
sequence

0 —> Tor, (4, G) - Tory (B, G) - Tor, (C,G) 3 A QG >B QG

is exact. Call E, the connecting homomorphism for Tor, and .

But again woe, if 4 is a subgroup of B, a homomorphism f: 4 -G
may not be extendable to a homomorphism B—G; in other words,
the exact sequence 0-»4-»B->C->0 induces a sequence (opposite
direction by contravariance!)

0 — Hom (C, G) — Hom (B, G) -> Hom (4, G) >0

which may not be exact at Hom (4,G). Ext! to the rescue: There is a
‘“‘connecting’’ homomorphism E* which produces a longer exact sequence

0 —Hom(C, G) - Hom (B, G) - Hom (4, G) £,
El Ext!(C, G) - Ext!(B, G) - Ext!(4, G) - 0.

Now generalize; replace abelian groups by modules over any com-
mutative ring R. Then Ext?(4,G) ist still defined as an R-module, but
the longer sequence may now fail of exactness at Ext}(4,G). There is
anew functor Ext?(A4,G), a new connectinghomomorphism E*: Ext! (4, G)
-Ext?(C,G), and an exact sequence extending indefinitely to the right
as

... Ext*(C, G) - Ext*(B, G) » Ext*(4, G) & Ext**!(C, G) > --- .
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The elements of Ext*(C, G) are suitable equivalence classes of long
exact sequences
0+G—>B, ;> >By—=>C-0

running from G to C through » intermediate modules. Similarly for
the tensor product; there are functors Tor, (4, G), described via suitable
generators and relations, which enter into a long exact sequence

o« =Tor, ., (C,G) 5 Tor,(4, G) - Tor, (B, G) > Tor, (C,G) —---

induced by each E: 04 -~B—>C—0. They apply also if the ring is
not commutative — and 4, B, and C are right R-modules, G a left
R-module.

These functors Tor, and Ext" are the subject of homological algebra.
They give the cohomology of various algebraic systems. If IT is a group,
take R to be the group ring generated by 7 over the integers. Then the
group Z of integers is (trivially) an R-module; if 4 is any other R-module,
the groups Ext}(Z, A) are the cohomology groups H"(II, A) of the
group II with coefficients in A. If n=2, H3(Il, A) turns out, as it
should, to be the group of all extensions B of the abelian group 4 by
the (non-abelian) group I, where the structure of 4 as a JI-module
specifies how A is a normal subgroup of B. If n=3, H¥(II, A) is a group
whose elements are “‘obstructions” to an extension problem. Similarly,
Tor,(Z, A) gives the homology groups of II. Again, if A4 is an algebra
over the field F, construct Ext® by long exact sequences of two-sided
A-modules A. The algebra A is itself such a module, and Ext*(4, 4) is
the cohomology of A with coefficients 4 ; again Ext*and Ext? correspond
to extension problems for algebras.

A module P is projective if every homomorphism P — B/4 lifts to a
homomorphism P—B. Any free module is projective; write any module
in terms of generators; this expresses it as a quotient of a free module,
and hence of a projective module.

How can Tor, and Ext® be calculated? Write A as a quotient of a
projective module F,; that is, write an exact sequence 0<-A<F,. The.
kernel of P4 is again a quotient of a projective B. This process con-
tinues to give an exact sequence 0« A<«FB <« B« ... The complex P
is called a “projective resolution” of 4. It is by no means unique;
compare two such

0~ A< B q-a—Pl « B <«

| in in
+ ’ 14 v
0OA<«PB <P P« .-

Since B, is projective, the map P, - 4 lifts to f,: B, —~F,. The composite
map F,—P, lifts in turn to an /,: B, —P, with 8f,=/,3, and so on by
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recursion. The resulting comparison f,:P,—P, of complexes induces a
homomorphism H, (P ®G) —H, (P’ ®G). Reversing therolesof Pand P’
and deforming P— P’ — P to the identity (deformations are called homo-
topies) shows this an isomorphism H,(P QG)=H,(P'®G). Therefore
the homology groups H, (P ®G) do not depend on the choice of the
projective resolution P, but only on 4 and G. They turn out to be the
groups Tor, (4, G). Similarly, the cohomology groups H*(P, G) are the
groups Ext*(4, G), while the requisite connecting homomorphisms E*
may be obtained from a basic exact homology sequence for complexes
(Chap. II). Thus Tor and Ext may be calculated from projective resolu-
tions. For example, if IT is a group, the module Z has a standard ““bar
resolution” (Chap. IX) whose cohomology is that of 7I. For particular
groups, particular resolutions are more efficient.

Qualitative considerations ask for the minimum length of a projective
resolution of an R-module 4. If there is a projective resolution of 4
stopping with B,,, =0, A4 is said to have homological dimension at
most #. These dimensions enter into the arithmetic structure of the
ring R; for example, if R is the ring Z of integers, every module has
dimension at most 1; again for example, the Hilbert Syzygy Theorem
(Chap. VII) deals with dimensions of graded modules over a polynomial
ring.

Two exact sequences 0—+4 —+B—+C—0and 0—»C —D—~»F—0 may
be “‘spliced” at C to give a longer exact sequence

0+A->B-» D >F->0;
\C)'

in other words, an element of Ext!(C, 4) and an element of Ext!(F, C)
determine a two-fold extension which is an element of Ext*(F, 4), called
their product (Chap. III). These and similar products for Tor can be
computed from resolutions (Chap. VIII).

Every R-module is also an abelian group; that is, a module over the
ring Z of integers. Call an extension E: 4 — B —C of R-modules Z-split
if the middle module B, regarded just as an abelian group, is the direct
sum of A and C. Construct the group Ext(‘x. 5(C, A) using only such
Z-split extensions. This functor has connecting homomorphisms E* for
those E which are Z-split. With the corresponding torsion functors and
their connecting homomorphisms, it is the subject of relative homological
algebra (Chap. IX). The cohomology of a group is such a relative functor.
Again, if A is an algebra over the commutative ring K, all appropriate
concepts are relative to K; in particular, the cohomology of A arises
from exact sequences of A-bimodules which are split as sequences of
K-modules.



6 Introduction

Modules appear to be the essential object of study. But the exactness
of a resolution and the definition of a projective are properties of homo-
morphisms; all the arguments work if the modules and the homo-
morphisms are replaced by any objects 4, B, ... with “morphisms”’
a:A — B which can be added, compounded, and have suitable kernels,
cokernels (BjaA), and images. Technically, this amounts to developing
homological algebra in an abelian category (Chap. IX). From the functor
T(A) = A ®G we constructed a sequence of tunctors T, (4) =Tor, (4, G).
More generally, let T, be any covariant functor which is additive
[Tyl +og) =Tyoy+ Tyag) and which carries each exact sequence
0—A — B —C—0 into a right exact sequence 7, (4) - T3 (B) > T, (C) — 0.
We again investigate the kernel of T;(4) »>1,(B) and construct new
functors to describe it. If the category has “‘enough” projectives, each 4
has a projective resolution P, and H,(Ty(P)) is independent of the
choice of P and defines a functor 7, (A4) which enters into a long exact
sequence

> T{A) > T, (B) > T, (C) BT,y () >+

Thus T, determines a whole sequence of derived functors 7, and of
connecting homomorphisms E,:T,(C)—T,_;(4). These “derived”
functors can be characterized conceptually by three basic properties
(Chap. XII):

(i) The long sequence above is exact,

(i1) It P is projective and >0, T, (P)=0,

(iii) If E—~E’ is a homomorphism of exact sequences, the diagram of
connecting homomorphisms commutes (naturality!):

L(O)—T,_,(4)

L(C)>T,,(4").

In particular, given T (4) =4 @G, these axioms characterize Tor,(4,G)
as functors of 4. There is a similar characterization of the functors
Ext*(C,A) (Chap. III). Alternatively, each derived functor 7, can be
characterized just in terms of the preceding T, _,: If E: S, (C) —S,,_, (4)
is another natural connecting homomorphism between additive functors,
each ‘‘natural” map of S,_, into 7,_, extends to a unique natural map
of S, into 7,. This “‘universal” property of T, describes it as the left
satellite of 7, _,; it may be used to construct products.

Successive and interlocking layers of generalizations appear through-
out homological algebra. We go from abelian groups to modules to
bimodules to objects in an abelian category; from rings to groups to
algebras to Hopf algebras (Chap. VI); from exact sequences to Z-split



