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Preface

This is a textbook primarily intended for students with approximately
a year’s background in complex variable theory. The material has been
collected from lecture courses given over a long period of years, mostly
at Harvard University. The book emphasizes classic and semiclassic re-
sults which the author feels every student of complex analysis should
know before embarking on independent research. The selection of topics
is rather arbitrary, but reflects the author’s preference for the geometric
approach. There is no attempt to cover recent advances in more special-
ized directions.

Most conformal invariants can be described in terms of extremal
properties. Conformal invariants and extremal problems are therefore
intimately linked and form together the central theme of this book. An
obvious reason for publishing these lectures is the fact that much of the
material has never appeared in textbook form. In particular this is true
of the theory of extremal length, instigated by Arne Beurling, which
should really be the subject of a monograph of its own, preferably by
Beurling himself. Another topic that has received only scant attention in
the textbook literature is Schiffer’s variational method, which I have
tried to cover as carefully and as thoroughly as I know how. I hope
very much that this account will prove readable. I have also included
a new proof of |as] < 4 which appeared earlier in a Festschrift for M. A.
Lavrentiev (in Russian).

The last two chapters, on Riemann surfaces, stand somewhat apart
from the rest of the book. They are motivated by the need for a quicker
approach to the uniformization theorem than can be obtained from Leo
Sario’s and my book ‘“Riemann Surfaces.”

Some early lectures of mine at Oklahoma A. and M. College had
been transcribed by R. Osserman and M. Gerstenhaber, as was a lecture
at Harvard University on extremal methods by E. Schlesinger. These
writeups were of great help in assembling the present version. I also ex-
press my gratitude to F. Gehring without whose encouragement I would
not have gone ahead with publication.

There is some overlap with Makoto Ohtsuka’s book ‘‘Dirichlet
Problem, Extremal Length and Prime Ends” (Van Nostrand, 1970)
which is partly based on my lectures at Harvard University and in
Japan.

Lars V. Ahlfors
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1

APPLICATIONS OF SCHWARZ’S LEMMA

1-1 THE NONEUCLIDEAN METRIC

The fractional linear transformation
az+ b
bz + a

S(z) = (1-1)

with |a|? — |b|2 = 1 maps the unit disk A = {z; |z| < 1} conformally onto
itself. It is also customary to write (1-1) in the form

— 2

S(z) = eix =2 (1-2)
1 — 22
which has the advantage of exhibiting zo = S~1(0) and « = arg S’(0).
Consider 21,22 € A and set w; = S(21), w2 = S(22). From (1-1) we
obtain

wy — We = A
VU (ber + @) (bes + a)
& 1 — 2122
1 — wwe =

(02, + a) (b2 + a)
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21— 2 w; — W
and hence BN Y § S (1-3)
1 — Zi22 1 — ww,
We say that
Bl = |52, (1-4)
] 1 — 2122

is a conformal invariant. Comparison of (1-2) and (1-4) shows that
8(z1,22) < 1, a fact that can also be read off from the useful identity

(1 — |z1]) (@ = |2e]?)
|1 == 21z2|2

1 e 5(21,22)2 =

If 2, approaches z,, (1-3) becomes

] ldw]
1— 22 1 — |w?

This shows that the Riemannian metric whose element of length is

_ 2|de
ds = L= [t (1-5)

is invariant under conformal self-mappings of the disk (the reason for the
factor 2 will become apparent later). In this metric every rectifiable arc y
has an invariant length
_ 2|de]
1= [

and every measurable set £ has an invariant area
/ / 4dx dy
1 — [
The shortest arc from 0 to any other point is along a radius. Hence
the geodesics are circles orthogonal to |z| = 1. They can be considered
straight lines in a geometry, the hyperbolic or noneuclidean geometry of

the disk.
The noneuclidean distance from 0 to » > 0 is

/‘r 2dr 101+r
0 1 =72 El—»

Since 6(0,r) = r, it follows that the noneuclidean distance d(z1,22) is con-
nected with 8(z1,22) through 6§ = tanh (d/2).
The noneuclidean geometry can also be carried over to the half plane
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H = {z = z + y; y > 0}. The element of length that corresponds to the
choice (1-5) is
_ laz|

Y

ds (1-6)

and the straight lines are circles and lines orthogonal to the real axis.

1-2 THE SCHWARZ-PICK THEOREM

The classic Schwarz lemma asserts the following: If f is analytic and
|f(2)] < 1 for |2] < 1, and if f(0) = O, then |f(z)| < |z| and [f'(0)| < 1.
Equality [f(z)| = |z| withz £ Oor|[f’(0)| = 1canoccuronlyforf(z) = ez,
a a real constant.

There is no need to reproduce the well-known proof. It was noted by
Pick that the result can be expressed in invariant form.

Theorem 1-1 An analytic mapping of the unit disk into itself de-
creases the noneuclidean distance between two points, the noneuclid-
ean length of an arc, and the noneuclidean area of a set.

The explicit inequalities are

|f(21) — f(z2)] - 21 — 2
[1 — fe)f(z2)] = |1 — Zazo
e
1 — [>T 1 —|mp
Nontrivial equality holds only when f is a fractional linear transformation
of the form (1-1).

Pick does not stop with this observation. He also proves the follow-
ing more general version which deserves to be better known.

Theorem 1-2 Let f: A — A be analytic and set wr = f(2:), k =

1,. .., n. Then the Hermitian form
S 1 — Wk -
Q.() = z ==k
hk=1 1 — 22k

is positive definite (or semidefinite).

PROOF We assume first that f is analytic on the closed disk. The
function F = (1 4+ f)/(1 — f) has a positive real part, andif F = U + iV
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we have the representation
1 roere? 2 p :
F@ = 5 [ G Ue) do +i7(0).

This gives

Fla) + Fa) = = [ 22—y,
™

0 (& — z1) (e~ — Z)
- Fh + Fk = 1 2 < 173
2zt h e

wit, 1 — 23 T T €0 — 2

Here F) + Fr = 2(1 — wuwi)/(1 — wy)(1 — ;). The factors in the de-
nominator can be incorporated in #, #, and we conclude that @.(f) > 0.
For arbitrary f we apply the theorem to f(rz), 0 < r < 1, and pass to the
limit.

and hence

2
Udo > 0.

Explicitly, the condition means that all the determinants

L—|wf* 1 — wab
1 — |z1)2 1 — 215
Dk = | s ¢ ¢ § o 6 o o o0 s e 0 s e e
1 — wyy 1— [wk|2
1 — z:%21 1— |zk|2

are >0. It can be shown that these conditions are also sufficient for the
interpolation problem to have a solution. If wy, . . . , w,—; are given and
Dy, ..., D,1 >0, the condition on w, will be of the form |w,|? +
2 Re (aw,) + b < 0. This means that w, is restricted to a certain closed
disk. It turns out that the disk reduces to a point if and only if D,_; = 0.

The proof of the sufficiency is somewhat complicated and would lead
too far from our central theme. We shall be content to show, by a method
due to R. Nevanlinna, that the possible values of w, fill a closed disk. We
do not prove that this disk is determined by D, > 0.

Nevanlinna’s reasoning is recursive. For n = 1 there is very little to
prove. Indeed, there is no solution if |w:| > 1. If |wi| = 1 there is a unique
solution, namely, the constant wi. If |wi| < 1 and fi is a solution, then

fl(Z) - W1 . & Zq
1 — w1f1(2) "1 — Z2

fz(z) = (1'7)
is regular in A, and we have proved that [f»(z)| < 1. Conversely, for any
such function f, formula (1-7) yields a solution f;.

For n = 2 the solutions, if any, are among the functions f; already
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determined, and fa(2:) must be equal to a prescribed value w,®. There
are the same alternatives as before, and it is clear how the process con-
tinues. We are trying to construct a sequence of functions fx of modulus
<1 with certain prescribed values fi(2:) = wi® which can be calculated
from wy, . . ., wp. If jw®| > 1 for some k, the process comes to a halt
and there is no solution. If |wx®| = 1, there is a unique f, and hence a
unique solution of the interpolation problem restricted to z;, . . . , z. In
case all |w,®| < 1, the recursive relations

fie) — we® 2z — 2z

=2 . k =31 e
fr41(2) 1 — B®fiz) "1 — Zz ' £

lead to all solutions fi of the original problem when f,;1 ranges over all
analytic functions with |f,41(2)| < 1in A.

Because the connection between fi. and fi+1 is given as a fractional
linear transformation, the general solution is of the form

An(@)fara(2) + B,.(Z),
Cn(@)fn+1(2) + Da(2)

where A,,B,,C,,D, are polynomials of degree n determined by the data of
the problem. We recognize now that the possible values of f(z) at a fixed
point do indeed range over a closed disk.

This solution was given in R. Nevanlinna [42]. The corresponding
problem for infinitely many zx,w; was studied by Denjoy [17], R. Nevan-
linna [43], and more recently Carleson [13].

fi(z) =

1-3 CONVEX REGIONS

A set is convex if it contains the line segment between any two of its
points. We wish to characterize the analytic functions f that define a
one-to-one conformal map of the unit disk on a convex region. For sim-
plicity such functions will be called convex univalent (Hayman [27]).

Theorem 1-3 An analytic function f in A is convex univalent if
and only if

f(2)
B~ s

for all z € A. When this is true the stronger inequality
$'@ 2 |2k
Flg T = 1=

(1-9)

is also in force.
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Suppose for a moment that f is not only convex univalent but also
analytic on the closed disk. It is intuitively clear that the image of the
unit circle has a tangent which turns in the positive direction when
0 = arg z increases. This condition is expressed through 4/06 arg df > 0.
But arg df = argf’ + argdz = argf’ + 6 + =/2, and the condition be-
comes 9/90 (argf' + 6) = Re (zf”"/f' + 1) > 0 for |z| = 1. By the maxi-
mum principle the same holds for |z| < 1.

Although this could be made into a rigorous proof, we much prefer
an idea due to Hayman. We may assume that f(0) = 0. If f is convex
univalent, the function

gz) = f* [

ﬂwG>+f@—qu
2

is well defined, analytic, and of absolute value <1 in A. Hence |¢’(0)| < 1.
But if f(2) = a1z + ax?+ - - -, then ¢(2) = (az/a)z + + - -, and we
obtain [as/ai] < 1, |f(0)/f'(0)] < 2. This is (1-9) for z = 0.

We apply this result to F(z) = f[(z + ¢)/(1 + ¢2)], |c| < 1, which
maps A on the same region. Simple calculations give

F'(0) _ §"(0)
FO) 7

and we obtain (1-9) and its consequence (1-8).

The proof of the converse is less elegant. It is evidently sufficient
to prove that the image of A, = {z; |¢| < r} is convex for every r < 1.
The assumption (1-8) implies that arg df increases with 6 on |z| = r. Since
f' is never zero, the change of arg df is 2x. Therefore, we can find 6, and 6,
such that arg df increases from 0 to = on [6,0:] and from = to 27 on
(62,61 + 27]. If f(re?®) = u(6) + w(6), it follows that v increases on the
first interval and decreases on the second. Let v, be a real number between
the minimum »(6;) and the maximum (). Then v(8) passes through v,
exactly once on each of the intervals, and routine use of winding numbers
shows that the image of A, intersects the line v = v, along a single seg-
ment. The same reasoning applies to parallels in any direction, and we
conclude that the image is convex.

The condition |f/(0)/f'(0)| < 2 has an interesting geometric inter-
pretation. Consider an arc v in A that passes through the origin and whose
image is a straight line. The curvature of v is measured by d(arg dz)/|dz|.
By assumption d(arg df) = 0 along v so that d(argdz) = —d argf’. The
curvature is thus a directional derivative of arg f’, and as such it is at
most |f"’/f'| in absolute value. We conclude that the curvature at the
origin is at most 2.

(1 - IC]2) — 2¢,
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This result has an invariant formulation. If the curvature at the
origin is <2, the circle of curvature intersects |z| = 1. But the circle of
curvature is the circle of highest contact. A conformal self-mapping pre-
serves circles and preserves order of contact. Circles of curvature are
mapped on circles of curvature, and our result holds not only at the origin,
but at any point.

Theorem 1-4 Let v be a curve in A whose image under a conformal
mapping on a convex region is a straight line. Then the circles of

curvature of vy meet |z| = 1.

This beautiful result is due to Carathéodory.

1-4 ANGULAR DERIVATIVES
For |a] < 1 and R < 1 let K(a,R) be the set of all z such that

Z2—a

1 — az

Clearly, K(a,R) is an open noneuclidean disk with center a and radius d
such that R = tanh (d/2).
Let K, = K(z.,R.) be a sequence of disks such that z, — 1 and

1 — |24
1— R,

—k # 0,0, (1-10)

We claim that the K, tend to the horocycle K defined by

1=z

k. k
TS (1-11)

The horocycle is a disk tangent to the unit circle at z = 1.

The statement K, — K is to be understood in the following sense:
(1) If z € K, for infinitely many n, then z € K, the closure of K; (2) if
z € K, then z € K, for all sufficiently large n. For the proof we observe
that z € K, is equivalent to

[1 — 222 1 — [z,.!Z_
1 — |22 1 = B2

(1-12)

If this is true for infinitely many 7, we can go to the limit and obtain
(1-11) by virtue of (1-10), except that equality may hold. Conversely, if
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(1-11) holds, then

.1 = Z.2)?
1 k
i T g
1 — |z
hil Jim —— L =
wnlle nl_{fl e an

so that (1-12) must hold for all sufficiently large n.
After these preliminaries, let f be analytic and |f(z)| < 1 in A. Sup-
pose that z, — 1, f(2.) — 1, and

LI

; 1-
=% a # © (1-13)

Given k > 0 we choose R, so that (1 — [24])/(1 — R.) = k; this makes
0 < R, < 1 provided 1 — [2,] < k. With the same notation

Kn = K(sz")

as above, we know by Schwarz’s lemma that f(K,) C K, = K(w.,R,)
where w, = f(z.). The K, converge to the horocycle K, with parameter
k as in (1-11), and because (1 — |w,|)/(1 — R.) — ak, the K, converge
to K., with parameter ak. If z € K, it belongs to infinitely many K,.
Hence f(z) belongs to infinitely many K, and consequently to K. In
view of the continuity it follows that

|1 — f(z)[*

N e s Taples < ok
e e e e W82 /(17
1 — |ef? 1 — |f(2)|2

This is known as Julia’s lemma.
Since k is arbitrary, the same result may be expressed by

L —f@IF L — o
L= @F = T F

= f@P L —e
o b e [1 —f@P 1- lle] =

In particular, « is never 0, and if 8 = o, there is no finite a.
Let us now assume 8 < « and take z, = z, to be real. Then

1 —a,
1+ x,.’
and the condition w, — 1 is automatically fulfilled. Furthermore,

ﬁ>|1—wnl21+xn> 1+ z, Il—wn|> 1+ 2, 1 — |wa
Tl = |wa?l —xp T LA |wa] 11— T 14 |wh| 1 — 2,

I]- _wn]2<,3




