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INTRODUCTION

To the surprise of many, Artificial Intelligence (Al) is a discipline with its initial roots
in the 1950s. The majority of work in this area since that time has been dedicated
to research in the areas of problem solving, knowledge representation, heuristic
search, machine vision, knowledge-based systems, predicate logic and natural
language. In the 1970s a culmination of these efforts led to the development of
expert systems, thus providing a technical foundation for the application of artifi-
cial intelligence to a wide variety of real-world problems.

The goal of the Applications of Artificial Intelligence Conference is to annually
present a technical forum in which applications work can be presented. As the
focus of the National Al Conference is primarily restricted to academic research,
the SPIE forum is dedicated to presenting high quality applications work and
identifying the contributions these programs are making to technology. To these
ends, thisyear’s conference consists of four sessions: expert systems, knowledge-
based systems, autonomous vehicles, and image understanding.

The expert systems session reviews applications in the area of conflict avoidance,
data interpretation, information fusion, scene analysis, decision aids, and fault
diagnosis. In addition, it also includes presentation of a new expert system building
tool developed by Lockheed.

Knowledge-based systems are intelligent programs that differ from expert systems
in that their knowledge does not include expertise extracted from an expert in the
application problem domain. Efforts presented in this area include consulting
systems, intelligent optical design programs, decision support systems and image
analysis.

Though originally planned well over a year ago, the inclusion of a session on
autonomous vehicles is very timely in light of the recent military activity in this
field. Several active programs in this area are presented including research work
performed at the Georgia Tech Engineering Experiment Station, Hughes Aircraft,
Honeywell, and the University of Florida.

Image understanding is the final session of this year’s program. Advanced vision
systems for target acquisition as well as efforts in the area of motion estimation,
spatial reasoning, and image analysis constitute the body of this session.

I would like to thank my co-chairmen who have aided me greatly in the preparation
of the technical program, and made it possible to assure the success of the first
annual Applications of Artificial Intelligence Conference.

John F. Gilmore
Georgia Institute of Technology
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A Context Dependent Automatic Target Recognition System
J.H. Kim, D.W. Payton, K.E. 0lin, and D.Y. Tseng

Artificial Intelligence Center
Hughes Aircraft Company
23901 Calabasas Road
Calabasas, CA 91302

Abstract

This paper describes a new approach to automatic target recognizer (ATR) development
utilizing artificial intelligent techniques. The ATR system exploits contextual
information in its detection and classification processes to provide a high degree of
robustness and adaptability. In the system, knowledge about domain objects and their
contextual relationships is encoded in frames, separating it from 1low 1level image
processing algorithms. This knowledge-based system demonstrates an improvement over the
conventional statistical approach through the exploitation of diverse forms of knowledge in
its decision-making process.

Introduction

The capabilities of current generation ATR represent a significant technical
advancement tqyigds the development of systems that can detect and classify targets
automatically. ’'“ Unfortunately, there are a number of serious deficiencies associated with
the basic approach used in these first generation systems, and these cannot be overcome by
continuing the current line of development. The basic approach used in all of the current
systems is to first extract feature information from imagery and then classify it using
statistical techniques. The first generation ATRs developed this way are all highly data
dependent in their performance. Noise and variations in the sensed image readily influence
system performance, and they need frequent adjustment of parameters to produce good
results. At the same time, no one fully understands how to set the parameters to yield the
best result. The systems are also highly dependent on fixed design paramaters, such as
segmentation window size, causing another type of performance sensitivity to the input
data. Also the current approaches use a fixed processing sequence to collect feature
information. There is no feedback mechanism to either change the type of information
collected in response to the type of evidence needed by the high level decision making
system.

This paper describes a new approach to ATR systems, that do not suffer from the above
severe problems. The system, which is implemented on the Symbolics LISP Machine, is
knowledge-based, and exploits various types of contextual (temporal, global, structural and
non-imagerial) information in the detection and classification process. The exloitation of
the contexutal information contained in the scene provides not only improvement of
detection and classification performance but also reduces processing requirements. The
additional information results in enhanced classification accuracy and ensures robust
performance with scene variability, yet permitting opportunistic, requirement-driven,
processing.

The system achieves synergistic integration of diverse forms of contextual 1n§oimation
through symbolic representation and reasoning known as an object-oriented approach”’ All
of the information about a particular object is put together, or encapsulated, into one
location, rather than scattered around in an unarraged manner. This object-oriented
knowledge representation is sufficiently flexible to permit representation of diverse types
of knowledge and yet sufficiently modular to enable easy modification and extension.
Object classes form a hierarchy with super/subclass (generic/specific) relationships in
that "children" represent specific classes of their "parent". All of the parent's
attributes are inherited to its children as a default. With this inheritance mechanism,
complex concepts are encoded parsimoniously in such a way that characteristics common to
all the children are stored only in the parent's location and only the characteristics that
make a child different from its siblings are encoded at the child's 1location. Model
objects constitute a model data base in that all the object classes expected to be
encountered in the problem domain are defined.

The inference and classification process proceeds by generating hypotheses about the

2 / SPIE Vol. 485 Applications of Artificial Intelligence (1984)



existence of certain objects in the image, and then seeking the required evidence to
satisfy those hypotheses. In doing so, new hypotheses may be generated, and existing
hypotheses may be refined by obtaining new evidence. Although the initial hypotheses are
generated through a bottom-up processing of the image, further hypotheses are generated
from top-down, model-driven processing. This model-driven processing re-directs low-level
image processing algorithms to gain new information from the image. Finally, each
hypothesis is evaluated, and image regions are classified in an "unforced® way by
subclassifying an object only when enough information is available.

System overview

This ATR system takes a sequence of digitized images as input and produces descriptions
of interesting objects and their behaviors. Our approach to target detection and
classification is mainly based on region segmentation. Raw gray scale images are segmented
into regions and the regions are described in terms of prestored object classes. Initially
the regions are classified as the most generic class that subsumes all the object classes
in the image domain. Then they are subclassified into more specific classes based on
various feature values and contextual relationships among them. Although the ultimate goal
of this system is to report locations of high-valued tactical objects, the entire regions
in the scene are labeled so that contextual information can be utilized through a feedback
process to detect high-valued tactical targets which are initially missed.

Like many other knowledge-based @ = = @ — — — — — — —

systems, this system separates domain '_ j
specific knowledge from its control
structure, and thus, image domain

knowledge can be viewed as a distinct | OBJECT & CONTEXT | SYESTCEI?ER
input to the inference engine as shown I KNOWLEDGE-BASE KNOWLEDGE DEEVXPLERT)

13863-11

in Figure 1. The domain knowledge base ACQUISITION
provides domain specific rules and 3 |
heuristics relevant to object detection
and identification, and the inference |
engine interprets the rules and

heuristics and performs specified NON"MAGERY| I
tasks. DATA '

v

I I

The knowledge base is a collection ]
of mode.l objects an.d th?i[‘ INFERENCE OBJECT
Felatior!shlps. Each model object, which SENSOR INPUTI ENGINE DESCRIPTIONS
is realized as a frame data structure, .

represents a class of objects that are I

expected to be encountered during the
processing of the scenes. Model objects ATR SYSTEM __J
form an object hierarchy that plays the
role of the hierarchical classifier. An
unknown object will match against each
of the model objects and be classified

Figure 1: System Top Level

to the best matching class. A model .
hierarchy used in a prototype is shown
in Figure 2. In this hierarchy, the @

scene object is the most general class
and subsumes all other object classes in
the image domain.

The inference engine of the system
consists of a number of image processing @
modules, high 1level decision making
modules and a frame interpreter. The @
image processing modules transform the
raw gray level images into intermediate e [ Tnee |
symbolic representations, i.e., in terms

of lines and regions, etc. The

high-level decision making components ° o Sl dupe
generate class hypotheses and evaluate

available evidence to confirm or refute [wauex |[ xer |[ vanx ][ arc ] [oaviwo] [ mockv [ Fonest | [ crors |
the hypotheses. The frame interpreter

provides an interface between the [ easeuine svstem ossects | ROAD || TRACK || om:u|
knowledge base and the other components

of the inference engine. It interprets

the knowledge base and controls image Figure 2: An Object Hierarchy

processing and high level
decision-making modules accordingly.

Eee
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Both model objects and modules of the infernece engine are formulated as objects in
this system. An operator that performs a specific fun%§ion on given data is viewed as an
expert that provides specific services upon request. Invocation of expert modules is
achieved by sending a predefined message to the expert. The expert, then, responds by
sending back messages. Since passing messages is the only way to communcate with experts,
a high degree of modularity is achieved. The overall system design and the functional
realtionships among the major components are shown in Figure 3.

6.

FRAME SYSTEM
MODEL DATA BASE

The spa%}al blackboard is a symbolic
pixel array which maintains all scene
specific information preserving spatial
relationships among scene elements. The
information in the symbolic pixel array
is accessible from all the components of
the system and includes raw images,
sensor characteristics, symbolic -
transformations, as well as | PRI () T a
classification hypotheses. The symbolic ORIGINAL |  SCENE
pixel array also possesses reasoning IMAGE linimiaLiZen SPATIAL BLACKBOARR. 1] &' INON-SPATIAL BLACKBOARD
capabilitites about spatial relations
such as ABOVE, CONTAINED, TOUCHING,
etc. It reduces the burdens of image Eﬂbn
data management by doing all the l I I
required bookkeeping tasks ol
automatically, and by providing a FINDER CnoER oo Aastmnonl PROCESSING
capability to handle a group of objects SR
(such as pixels, lines, regions) either
as a group or as individual objects. Figure 3: System Overview

o
L]

BLACKBOARD

Various features, either characterizing a single scene element or describing
relationships among relevant objects, are computed by calling various expert modules as
needed. These feature measurements are wused for resolving uncertainties in the
determination of class labels. In this computation, model objects provide instructions for
when and how to call expert modules and how to use the feature measurements to determine
object classification.

A model object can be classified, i.e., described, at multiple levels of abstraction.
because it is a generic description of more specific objects and, at the same time, is a
specialization of its more generic classes. For example, a tank is a tracked object, and
at the same time it is a mobile object and a tactical object. Therefore, a scene object
which is known as a tank can be placed into classes defined at different levels of
abstraction, such as tactical object, mobile object, tracked object, and tank. However, a
more specific description of an object requires more information. 1Intelligent beings, such
as humans, would refuse to classify an object into a specific class unless sufficient
information were available. For example, we might say "That is definitely a moving object
but I don't know whether that is a tank or truck". The classification algorithm used in
this system models this behavior by producing multiple class descriptions incorporating the
object hierarchy.

original segmented

Figure 4: Initial Segmentation Result
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Symbolic transformation

Raw gray-scale images are transformed into a number of symbolic representations such as
edges, lines, vertices, and regions. These symbolic representations are recorded on the
spatial blackboard and made available to the high-level decision making modules that
utilize them throughout the detection and classification process. In general, these
symbolic transformations require well selected processing parameters that are critical to
the performance of the entire system. In our system, however, the parameters are
dynamically determined through a feedback process to yield maximum performance and
computational efficiency. For example, if a road is found in the initial analysis of a
scene, a region segmentor is then applied with a lower threshold in the vicinity of the
road to find tactical objects that may have been missed in the initial analysis. Figure 4
shows a typical imagery we are working on and its region segmentation results.

Classification

The most distinguishable characterisitic of the intelligent classification process is
probably its ability to adaptively determine the appropriate levels of description based on
the amount of information available. People describe an object in a specific level only"
when sufficient information is available. For example, when a low resolution image is
given to a person and he is asked to tell what's in the image, it is quite common to hear
such a response that "it is probably a vehicle, but I don't know whether it is a jeep or
truck." The computational scheme employed in this system models this kind of intelligent
classification reasoning normally employed by human experts.

Once through the initial
segmentation step, an input image is
represented as a group of regions. Each
region is repesented as a frame with its

own. values for various region attributes INITIAL OBJECTS + CLASSIFICATION _, R:S?:TD
such as area, centroid, and primary and HEIRARCHY DESCRIPTIONS

secondary axes. These regions are
subject to classification in terms of
the classes encoded in the model object
hierarchy. Each region 1is initially
classified as a scene object which is
the most generic object class that
subsumes all object classes in the image
domain. Note that the classification of
a region as a scene object does not
involve any ambiguities or
uncertainties. As the inference process
proceeds, each object is hypothized as
each of its subclasses and evidence is Figure 5: Data-driven Hypothesis Generation
gathered to confirm or refute these

hypotheses. This cycle of hypothesis

generation, evidence gathering, and

confirmation or refutation is repeated

e
[ =>
> @B &

Croan> Chit > Crake >

for each confirmed hypothesis until each ROAD MODEL so-.ce
region is <classified as ‘a terminal
objects class of the object hierarchy, ROAD SUBREGIONS —_—) VEHICLE

or no further subclassification is
possible because of low confidence for
the current classification.

LOOK OVER ENTIRE

HYPOTHESIZED ROAD STRONG LINES - ROAD FOR VEHICLES
An object's class hypothesis is DEDUCTIVE: :>

represented as an instance of the class
model. Therefore, generation of a
hypothesis corresponds to instantiation LOOK FOR s e
of the class model. Hypotheses may be SRR SRS )
generated in either a data driven or a HYPOTHESIZED ROAD
model driven manner. In the data driven
form, hypotheses are generated in an INDUCTIVE: ::>
attempt to subclassfy 'established’ (/7

STRONG LINES STRONG LINES .

objects into their subclasses. In the
model driven form, hypotheses are

generated from the need to find new 5 —dri i 3

D ifence for .sxisting Rypatimess. Wiy Figure 6: Model-driven Hypothesis Generation
example, based on the heuristic rule

that vehicles are ususally found on s
roads, vehicle hypotheses may be 54
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generated in an attempt to gather evidence for a road hypothesis. Figures 5 and 6
illustrate the data-driven and model-driven approaches for hypothesis generation.

Associated with each hypothesis is a confidence factor that represents the degree of
the likelihood of a hypothesis being true by a value between -1 and 1. Upon instantiation,
the confidence factor is set to zero to represent the neutral belief state. Generated
hypotheses are subject to passing a series of extensive testing to confirm or refute their
class membership. Central to the confirmation and refutation process is the integration of
various evidence and updating of confidence factors to lead to a class decision. To
achieve -efficiency, we proceeded with two computational steps. In the first step,
hypotheses are filtered by computationally simple tests. Highly unlikely hypotheses are
quickly eliminated by simple binary, true/false tests. Only the hypotheses that pass this
screening test will receive further evaluation. The second step is very complex and time
consuming. Each piece of evidence is carefully weighed, integrated into the existing body
of evidence, and confidence is updated. The final class label for an object is determined
through consideration of the confidence scores accumulated on all hypothosized classes for
the object.

Confidence Evaluation

The computation of the confidence score for a hypothesis must take into account all the
evidence computable from the corresponding model object as well as from the relationships
with other hypotheses. Each model object contains information of how attribute values
impact the hypothesis in terms of IF-THEN rules. The IF part states conditions in terms of
various attribute values and the THEN part is a confidence factor which states the amount
of confidence to be added if the condition is fully satisfied. Following MYCIN's
convention’, the confidence factor simply represents the change of belief status upon
observing the satisfaction of the conditions. For example, consider the following road
object rule:

IF (highly-elongated SELF) THEN 0.5 .

The rule is read as "if the object under investigation is highly elongated, there is
suggestive evidence(0.5) that it is a road." A negative confidence factor represents
subtracted confidence when the condition is satisfied. When the conditions are not fully
satisfied, the confidence factor is proportionately reduced according to the degree of
satisfaction. Like MYCIN, supporting evidence is maintained separately from refuting
evidence. Pieces of supporting or refuting evidence are combined repectively such that a
newly acquired piece of evidence is applied proportionately to the remaining disbelief or
belief.

With the same rule format, context relations can be represented. For example, a rule
for tactical objects,

IF (near SELF ROAD) THEN 0.4 ,

represents that an object near a road is likely to be a tactical object. 1In the evaluation
of the rule, the inference system selects the best road among candidates satisfying user
specified conditions and uses it to compute the tactical object's confidence score.

Since an object may have several different hypothized classifications, the confidence
score for a hypothesis should be consistent with that of the other hypotheses for the
objects. Supporting evidence for one object classification is also support generalization
of that classification. On the other hand, refuting evidence for a given classification is
also refute specializations of that classification. Furthermore, a hypothesis of a generic
class should be always more confident than the hypotheses of its subclasses. As an
example, an object likely to be a truck is more likely to to be a vehicle since vehicle is
a generic description of truck. The confidence score of a given hypothesis is computed by
integrating all of the supporting evidence to its descendant class hypotheses and all of
the refuting evidence to its ancestor class hypotheses. After computing the confidence
factors of all established hypotheses, the object is described as the class corresponding
to the highest score subclass at each branching point, traversing from the root node to a
terminal node. The nodes on the path represents the most likely classes for the object.
Note that the selected classes are not mutually exclusive, but they describe the same
object at different levels of specification.

Distributed control

The control machanism of this system is object-oriented, i.e., distributed over the
objects in the system. Each classification hypothesis is associated with a process which
controls its evidence gathering and creation of new hypothses as required. When a
hypothesis is created, the associated process executes procedures to gather evidence and
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evaluates rules to update the confidence factor to confirm or refute the hypothesis. Once
the hypothesis is confirmed , it spawns a process for each of its subclass hypotheses.
Control knowledge for each process is contained within the associated object model,
allowing the evidence gathering behaviors to be generic to their models, but specific to
their local context. This distributed control mechanism, which combines synergistically
model-driven and data-driven control strategies, can be naturally implemented in parallel
processing architectures.

Summarx

A knowledge-based system for context dependent ATR has been presented. Exploiting
various types of contextual information contained in the scene, the system represents an
improvement over the conventional approach, and paves the way for the next generation ATR
system wusing artificial intelligence techniques. This system's skeleton, knowledge
representation mechanism and inference engine, can be easily applied to the other
classification problems by supplying different domain knowledge.
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Abstract

A human air traffic controller perceives possible aircraft collisions from a display
of many aircraft. In the work described here, the computer understands the displayed
aircraft conflict data by processing a global, semantic representation of the displayed
data. Understanding implies that the computer can represent and interpret the displayed
data in a manner suggestive of an experienced human controller. The representation is
called the conflict structure. The paper describes the conflict structure and its use by
an expert system that performs the enroute air traffic control task. An example is taken
from a 'live' air traffic control training problem.

Introduction

Human air traffic controllers recognize elegant plans for controlling aircraft. The
plans may be original or suggested by another controller. The elegance of a plan is depen-
dent on the recognition, interpretation, and use of planning attributes such as conflict
localization, constraint relaxation, and multiple goal satisfaction. The human air traffic
controller's representation of the air traffic problem makes these attributes explicit. An
expert system architecture influenced by such planning attributes has been implemented
[1]. The overall performance is dependent on the knowledge representations employed by the
expert system, its problem solving strategies (for problem definition, decomposition, and
resolution), and its ability to reason qualitatively about plans. In this paper, the
design and implementation of a capability that allows the computer to represent and
interpret (i.e., to understand) displayed air traffic control data is discussed. The ap-
proach to computer understanding is script-based [2].

Visual perception is a critical aspect of the human controller's skill. He can
perceive possible collisions from a display of many aircraft. The display may be a time-
ordered list of 'flight strips' or a computer generated display from radar tracking data |
and aircraft transponder data. The computer understands the displayed aircraft conflict |
data by processing a global, semantic representation of the displayed data. This knowledge
is called the conflict structure and is represented in a semantic network where nodes are |
aircraft and 1inks are indicators of the types and relative location of conflicts (i.e., |
head-on, merging, above, west-of). Based on interviews with controllers from the Chicago
Air Traffic Control Center and the FAA Academy, the conflict structure is a plausible |
coghitive representation of the controller's visual field as restricted to the conflict
avoidance task. The structure is the input to the expert system that performs the enroute
air traffic control task. The air traffic control expert system accomplishes the conflict
resolution task as well as other tasks such as fuel efficient route selection and meter-
ing.

A bottom-up problem solving approach would form a solution set of two aircraft prob-
lems. The approach taken in this work is top-down. Decomposition strategies, suggested by
human controllers, manipulate the conflict structure to form less complex subproblems. In
many cases, the initial conflict structure is transformed into more general abstract
structures where nodes represent abstracted aircraft. Detailed problem solving is then
accomplished using the human controller's heuristics and automated control algorithms. The
paper describes the conflict structure and its use by the expert system. Examples are
taken from 'live' air traffic case studies which were identified as difficult by human
controllers. It is shown that the problem decomposition performed by the expert system
approaches that of the highly skilled human controller.

Human Controller Planning Behavior

An aircraft conflict occurs when two or more aircraft violate another aircraft's air-
space. Controllers perceive conflict situations fifteen to twenty minutes in advance, and
typically issue resolution commands three to five minutes in advance. The commands are
chosen to achieve the high level goals of safety and expediency, and form part of a
dynamic ‘bug-prone' plan. Each command is chosen based on stereotypical knowledge of past
conflict situations. A proposed command is criticized by comparing it against known con-
straints, such as not causing another conflict during a brief look-ahead time period.

The controller's stereotypical knowledge is obtained during a lengthy training per-
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iod. The initial training takes place at the FAA Academy in Oklahoma City and concentrates
on equipment familiarization and the acquisition of domain rules and constraints. After
the initial training, the human controller spends approximately four years in training at
a control center before he is fully qualified. The education process is a combination of
on-the-job training and supervised practice in the Dynamic Simulator (DYSIM). The 1later
form of learning involves understanding and representing the advice of another expert. A
few observations are significant.

(1). Controllers recognize elegant solutions to conflict resolution problems. In
fact, they learn by the incremental acquisition of those solutions,

(2). Elegant solutions are characterized by a controller's ability to localize con-
flicts, relax constraints, and recognize and plan for multiple goals.

a. Conflict localization is the ability to rapidly digest a traffic scenario and
predict the conflicts. The controller knows which conflict pairs are related either spa-
tially or by the similarity of the invoked commands.

b. Constraint relaxation refers to situations when a controller elects to
'break' the rules. For instance, a controller may elect to violate an aircraft's protec-
tion circle.

¢c. Multiple goal satisfaction refers to the controllers' ability to utilize a
reduced command set to realize several goals. For example, a controller may elect to
resolve several conflicts with one command.

(3). A human controller develops his own style of controlling aircraft, yet can
understand the plans of another controller. Comprehension is demonstrated by the brief
explanations that suffice when one controller 'hands off' his position to another control-
ler.

Experienced controllers represent air traffic control problems in such a way that
unneeded details are suppressed, the 'right' things are made explicit, and the resulting
plans and their goals are easy to understand. Thus, the human controller's representation
of a problem includes those attributes of elegance previously discussed. The purpose of
this work, is to give a computer the ability to construct and process such a representa-
tion.

The Conflict Structure

The conflict structure is a global, semantic representation of the aircraft conflict
data. This data is derived from a processing algorithm which includes heuristic knowledge
of ATC maps.[3]. An example heuristic is 'two aircraft probably won't collide if their
flight plans call for them to be on airways that don't intersect.' The algorithm produces
a space of all conflict pairs during some specified time period. The conflict structure is
created by generating a semantic network where nodes are the aircraft involved in con-
flicts and links describe the conflict type and relative position between aircraft. There
are four types of conflicts in enroute air traffic control: head-on, crossing, merging,
and overtake., Aircraft position is based on the following semantic descriptors: relative
altitude (above, below, and same-altitude) and relative horizontal position (right-of,
left-of, in-front-of, and in-back-of). An example conflict situation is shown in Fig. 1.
The problem involves six aircraft and nine conflicts during a fifteen minute period. The
same problem is used in the upgrade training of human controllers. The data processing
algorithm describes each conflict pair in terms of the aircraft involved, the conflict
time, and the miss distance. The flight plans of the respective aircraft are then examined
to determine the semantic indicators of relative position, relative altitude, and conflict
type.

The conflict structure is shown in Fig. 2. The links can be interpreted bidirection-
ally. For instance, ua86 is in a head-on conflict with aa83. aa83 is below and in-front-of
ua86. This implies that ua86 is above and in-from-of aa83. The processing algorithm is
also used to find the non-conflict aircraft neighborhood around each conflict pair. For
instance, there may be aircraft to the left of ua86 which are not now in conflict.
However, an avoidance maneuver to the left by ua86 may cause new conflicts. The
neighborhood structure explicitly identifies this possibility. The neighborhood data are
not shown in this example.
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Figure 1. Typical Aircraft Conflict Problem

Table 1. Conflict Data From Figure 1

time of conflict aircraft relative relative miss

conflict type 1/2 altitude position distance
(hours) (nm)
18.596 head-on ua86/aa83 below in-front-of 0.00
18.644 head-on ua86/ua85s above in-front-of 0.64
18.655 head-on aa83/uag0 above in-front-of 0.00
18.677 head-on ua86/aa87 above in-front-of 1.42
18.693 crossing ua85/n4Tv below left-of 7.15
18.704 head-on ua90/ua8s above in-front-of 2.38
18.715 crossing ua90/n4Tv above left-of 9.37
18.727 crossing aa87/nlTv below right-of 3.56
18.735 head-on ua90/aa87 above in-front-of 1.96

Problem Recognition and Decomposition

Each link of the conflict structure specifies an aircraft conflict avoidance goal of
the form:

(or
(> (vertical-sep ?ac1 ?ac2) *vert-sep-std¥)
(> (horizontal-sep ?ac1 ?ac2) ®*horz-sep-std¥®)))

The conflict structure can be decomposed into a list of two aircraft problems (a bottom-up
approach to problem solving). A solution set of two aircraft problem solutions is formed.
The set is then searched for common or contradictory plan segments. Wesson [4] used such
an approach in his air traffic control planning system. It is interesting that novice
controllers solve these types of problems in the same manner. However, an experienced

controller takes advantage of the semantic descriptors to abstract common aircraft and
thus form a new conflict structure prior to problem decomposition. For instance, the
aircraft ua85 and aa87 are involved in head-on conflicts with ua86. Each is above ua86 at
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