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Preface

Until recently the applications of modern algebra were mainly confined to
other branches of mathematics. However, the importance of modern
algebra and discrete structures to many areas of science and technology is
now growing, rapidly. It is being used extensively in computing science,
physics, chemistry, and data communication as'well as in new areas of
mathematics such as combinatorics. We believe that the fundamentals of
these “applications can now be taught at the junior level. This book
therefore constitutes a one-year course in modern algebra for. those stu-
dents who have been exposed to some linear algebra. It contains the.
essentials of a first course in modern algebra together with a wide variety
of applications: -

Modern algebra is usually taught from the" point of view of its intrinsic
interest, and students are told that applications will appear in later courses. -
- Many students lose interest when they do not see ‘the relevance of the
subject and often begome skeptical of the perennial explanation that the
material will be used later, However, we believe that, by providing interest-
ing and nontrivial applications as we proceed, the student will better
appreciate and understand the subject. ‘ =
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We cover all the group, ring, and field theory that is usually contained in-
a standard modern algebra course; the exact sections containing this
material are indicated in the Table of Contents. We stop short of the Sylow
theorems and Galois theory. These topics could only be touched on in a
first course, and we feel that more time should be spent on them if they are
to be appreciated.

In Chapter 2 we discuss Boolean algebras ‘and their application to
switching circuits. These provide a good example of algebraic structures
whose elements are nonnumerical. However, many instructors may prefer
to postpone or omit this chapter and start with the group theory in
Chapters 3 and 4. Groups are viewed as describing symmetries in nature
and in mathematics. In keeping with this view, the rotation groups of the
regular solids are investigated in Chapter 5. This material provides a good
starting point for students interested in applying group theory to physics
and chemistry. Chapter 6 introduces the Polya-Burnside method of enu-
merating equivalence classes of sets of symmetries and provides a very
practical application of group theory to combinatorics. Monoids are be-
coming more important algebraic structures today; these are discussed in
Chapter 7 and are applied to finite-state machines.

The ring and field theory is covered in Chapters 8-11. This theory is
motivated by the desire to extend the familiar number systems to obtain
the Galois fields and to discover the structure of various subfields of the
real and complex numbers. Groups are used in Chapter 12 to construct
Latin squares, whereas Galois fields are used to construct orthogonal Latin
squares. These can be used to design statistical experiments. We also
indicate the close relationship between orthogonal Latin squares and finite
geometries. In Chapter 13 field extensions are used to show that some
famous geometrical constructions, such as the trisection of an angle and
the squaring of the circle, are impossible to perform using only a straight-
edge and compass. Finally, Chapter 14 gives an introduction to coding
theory using polynomial and matrix techniques. '

We do not give exhaustive treatments of any of the applications. We
only go so far as to give the flavor without becoming too involved in
technical complications. The interested reader may delve further into any
topic by consulting the books in the bibliography. )

It is important to realize that the study of these applications is not the
only reason for learning modern algebra. These examples illustrate the
varied uses to which algebra has been put in the past, and it is extremely -’
likely that many more different applications will be found in the future.

One cannot understand mathematics without doing numerous examples.

" There are a.total of over 600 exercises-of varying difficulty, at the end of
the chapféts: Answers to the odd-numbered exercises are given at the back
of the book. ‘ '
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Figure 0.01. The prerequisite structure of the chapters.

Figure 0.01 illustrates the interdependence of the various chapters. A
solid line indicates a necessary prerequisite for the whole chapter, and a
dotted line indicates a prerequisite for one section of the chapter. Since the
book contains more than sufficient material for a two-term course, various
sections or chapters may be omitted. The choice of topics will depend on
the interests of the students and the instructor. However, to preserve the
essence of the book, the instructor should be careful not to devote most of
the course to the theory, but should leave sufficient time for the applica-
tions to be appreciated.

I would like to thank all my students and colleagues at the University of
Waterloo, especially Harry Davis, D. Z. Djokovi¢, Denis Higgs, and Keith
Rowe, who offered helpful suggestions during the various stages of the
manuscript. I am very grateful to Michael Boyle, Ian McGee, Juris
Stepfans, and Jack Weiner for their help in preparing and proofreading the
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preliminary versions and the final draft. Finally, I would like to thank Sue
Cooper, Annemarie DeBrusk, Lois Graham, and Denise Stack for their
excellent typing of the different drafts, and Nadia Bahar for tracing all the
figures.

WILLIAM J. GILBERT

Waterloo, Orm;'io, Canada
April 1976
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Introduction 1

Algebra can be defined as the manipulation of symbols. Its history falls
into two distinct parts, with the dividing date being approximately 1800.
The algebra done before the nineteenth century is called “classical
algebra,” whereas most of that done later is called “modern algebra” or
“abstract algebra.” '

CLASSJCAL ALGEBRA

The technique of introducing a symbol, such as x, to represent an un-
known number in solving problems was known to the ancient Greeks. This
symbol could be manipulated just like the arithmetic symbols until a
solution was obtained. Classical algebra can be characterized by the fact
that each symbol always stood for a number. This number could be
integral, real, or complex. However, in the seventeenth and eighteenth
centuries, mathematicians were not quite sure whether the square root of
minus one was a number. It was not until the nineteenth century and the
beginning of modern algebra that a satisfactory explanation of the com-
plex numbers was given.
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The main goal of classical algebra was to use algebraic manipulation to
solve polynomial equations. Classicat algebra succeeded in producing
algorithms for solving all polynomial equations in one variable of degree
less than or equal to four. It was shown by Niels Henrik Abel (1802-1829),
by modern algebraic methods, that it was not always possible to solve a
polynomial equation of degree five or higher in terms of nth roots.
Classical algebra also developed methods for dealing with linear equations
containing several variables, but little was known about the solution of
nonlinear equations.

Classical algebra provided a powerful tool for tackling many scientific
problems, and it is still extremely important for working out today’s
problems. Perhaps the mathematical tool most useful in science, engineer-
ing, and the social sciences is the method of solution of a system of linear
equations together with all its allied linear algc bra.

MODERN ALGEBRA

In the nineteenth century, it was gradually realized that mathematical
symbols did not necessarily have to stand for numbers; in fact, it was not
necessary that they stand for anything at all! From this realization
emerged what is now known as modern algebra or abstract algebra.

For example, the symbols could be interpreted as symmetries of an
object, as the position of a switch, as an instruction to a machine, or as a
way to design a statistical experiment. The symbols could be manipulated
using some of the usual rules for numbers. For example, the polynomial
3x*+2x—1 could be added to and multiplied by other polynomials
without ever having to interpret the symbol x as a number.

Modern algebra has two basic uses. Its first is to describe patterns or
symmetries that occur in nature and in mathematics. For example, it can
describe the different crystal formations in which certain chemical sub-
stances are found and can be used to show the similarity between the logic
of switching circuits and the algebra of subsets of a set. The second basic
use of modern algebra is to naturally extend the common number systems
to other useful systems.

BINARY OPERATIONS

The symbols that are to be manipulated are elements of some set, and the
manipulation is done by performing certain operations on elements of that
set. Examples of such operations are addition and multiplication on the set
of real numbers.
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As shown in Figure 1.01, we can visualize an operation as a “black box”
with various inputs coming from a set S and one output, which combines
the inputs in some specified way.

axbd

Binary operation Unary operation

Figure 1.01

If the black box has two inputs, the operation combines two elements of
the set to form a third. Such an operation is called a binary operation. If
there is only one input, the operation is called unary. An example of a
unary operation is finding the reciprocal of a nonzero real number.

A binary operation, %, on a set S is really just a particular function from
S xS to S. We denote the image of the pair (a,b) under this function by
a » b. In other words, the binary operation * assigns to any two elements a
and b of S the element axb of S. We often refer to an operation * as
being closed to emphasize that each element a x b belongs to the set S and
not to a possibly larger set. Many symbols are used for binary operations;
the most common are +, -, —, o, +, U, N, A and \/.

A unary operation on S is just a function from § to §. The image of ¢
under a unary operation is usually denoted by a symbol such as ¢’, et
or (—c¢).

Let P={1,2,3,...} be the set of positive integers. Addition and multi-
plication are both binary operations on P, because, if x,y €P, then x+y
and x-y €P. However, subtraction is not a binary operation on P because,
for instance, 1 —2 @P. Other natural binary operations on P are exponentia-
tion and the greatest common divisor, since, for any two positive integers x
and y, x” and GCD(x, y) arc well-defined elements of P.

Let R be the set of all real numbers. Addition, multiplication, and
subtraction are all binary operations on R because x +y, x-y, and x —y are
real numbers for every pair of real numbers x and y. The symbol — stands
for a binary operation when used in an expression such as x —y, but it
stands for the unary operation of taking the negative when used in- the
- expression — x. Division is not a binary operation on R because division by

zero is undefined. However, division is a binary operation on R— {0}, the
set of nonzgro real numbers. .
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A binary operation on a finite set can often be conveniently presented
by means of a table. For example, consider the set 7= {a,b,c}, containing
three elements. A binary operation % on 7 is defined by Table 1.1. In this
table, x y is the element in row x and column y. For example, bxc=5
and cxb=aq.

Table 1.1. A binary

operation on{a,b,c)

* l a b c
a b a a
b c a b
c c a b

One important binary operation is the composition of symmetries of a
" given figure or object. Consider a square lying in a plane. The set S of
symmetries of this square is the set of mappings of the square to itself that
preserve distances. Figure 1702 illustrates the composition of two such

symmetries to form a third symmetry.

A squore in its

original position ]
e R P
2 A rotation A flip about
through w/2 'hea;ie;’hcul
3 4 a

A flip about a diagonal axis

Figure 1.02. Composlﬂondsymmeu'lesofasqm.

Most of the binary operations we use have one or more of the following
special properties. Let % be a binary operation on a set S. This operation is-
called associative if ax(bxc)=(axb)xc for all a,b,cE S. The operation
* is called commutative if axb=b%a for all a,b€S. The element e€ S is
said to be an identity for » if ake=exa=a for all acs.

If * is a binary operation on S that has an identity e, then b is called the
" inverse of a with respect to & if axb=bxa=e. We usually denote the
inverse of a by a~'; however, if the operation is addition, the inverse is
denoted By —-a. :

If *# and o are two binary operations on S, then o is said to be

Ko vy oy
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distributive over % if ac(bxc)=(aeb)x(a~c) and (bxc)eca
- =(boa)x(c-a) for all a,b,cES. .

- Addition and multiplication are both associative and commutative oper-
ations on the set of real numbers, R. The identity for addition is 0, whereas
the multiplicative identity is 1. Every real number, g, has.an inverse under
addition, namely, its negative, —a. Every nonzero real number a has a
multiplicative inverse, @ ~!. Furthermore, multiplication is distributive over
addition because a-(b+ ¢)=(a-b)+(a-c) and (b + ¢)-a=(b-a)+(c-a); how-
ever, addition is not distributive over multiplication because a+(b-c)
#(a+ b)-(a+c) in general.

Denote the set of n X n real matrices by 9 (n X n;R). Matrix multiplica-
tion is an associative operation on 9 (n X n;R) but it is not commutative
(unless n=1). The matrix J, whose (i,j)th entry is 1 if i=/ and 0 otherwise,
is the multiplicative identity. Matricesthat have inverses under multiplica-
tion are called nonsingular.

ALGEBRAIC STRUCTURES

A set, together with one or more operations on the set, is called an
algebraic structure. The set is called the underlying set of the structure.
Modern algebra is the study of these structures; in later chapters, we
examine various types of algebraic structures. For example, a field is an
* algebraic structure consisting of a set F together with two binary opera-
tions, usually denoted by + and -, that satisfy certain conditions. We
denote such a structure by (F, +, *).

. In order to understand a particular structure, we usually begin by
examining its substructures. The underlying set of a substructure is a subset
of the underlying set of the structure, and the operations in both structures
are the same. For example, the set of complex numbers, €, contains the set
of real numbers, R, as a subset . The operations of addition and multiplica-
tion on C restrict to the same operations on R, and therefore (R, +,-) is a
" substructure of (C, +, ).

Two algebraic structures of a particular type may be compared by
means of structure-preserving functions called morphisms. This concept of
morphism is one of the fundamental notions of modern algebra. We
encounter it among every algebraic structure we consider.

More precisely, let (S, %) and (7, °) be two algebraic structures consist-
ing of the sets S and T, together with the binary operations * on S and o
on T. Then a function f: S—T is said to be a morphism from (S, %) to
(T, <) if, for every x,y €S,

F(xxy)=F(x)=f ().
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If the structures contain mgre than one operation, the morphism must
preserve all these operations. Furthermore, if the structures have identities,
these must be preserved too.

As an example of a morphism, consider the set of all integers, Z, under
the operation of addition and the set of positive real numbers, R, under
multiplication. The function f: LR, defined by f(x)=e* is a morphism
from (Z,+) to (R-0: *). Multiplication of the exponentials e* and e”
corresponds to addition of their exponents x and y.

A vector space is an algebraic structure whose underlying set is a set of
vectors. Its operations consist of the binary operation of addition and, for
cach scalar A, a unary operation of muitiplication by A. A function
f:8—T, between vector spaces, is a morphism if f(x +y)=f(x)+ f(y) and
J(Ax)=Af(x) for all vectors x and y in the domain S and all scalars A. Such
a vector space morphism is usually called a linear transformation.

A morphism preserves some, but not necessarily all, of the properties of
the domain structure. However, if a morphism between two structures is a
bijective function (that is, one-to-one and onto), it is called an isomorphism,
and the structures are called isomorphic. Isomorphic structures have identi-
cal properties, and they are indistinguishable from an algebraic point of
view. For example, two vector spaces of the same finite dimension over a

" field F are isomorphic.

One important method of constructing new algebraic structures from old
ones is by means of equivalence relations. If (S, %) is a structure consisting
of the set S with the binary operation * on it, the equivalence relation ~
on § is said to be compatible with * if, whenever a~b and c~d, it follows
that axc~bd. Such a compatible equivalence relation allows us to
construct a new structure called the quotient structure, whose underlying
set is the set of equivalence classes. For.example, the quotient structure of
the integers, (Z, +, -), under the congruence relation modulo n, is the set of
integers modulo n, (Z,, +, -).

EXTENDING NUMBER SYSTEMS

In the words of Leopold Kronecker (1823-1891), “God created the natural
numbers; everything else was man’s handiwork.” Starting with the set of
natural numbers under addition and multiplication, we show how this can
be extended to other algebraic systems that satisfy properties not held by
the natural numbers. The integers (Z, +, -) is the smallest system contain-
ing the natural numbers, in which addition has an identity (the zero) and
every element has an inverse under addition (its negative). The integers
have an identity under multiplication (the element 1), but 1 and — 1 are the



