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To Daniel and Julia, two of the
greatest kids growing up in a nonlinear world.



PREFACE

These lecture notes provide an introduction to the nonlinear analysis of
solutions to hydrodynamic models. Traditionally, at least in the atmospheric
sciences, most theoretical study of the properties of the solutions is limited to a
linear analysis. The reasoning is that finding the linear modes with the fastest
growth rates should yield an adequate understanding of the observed flows. 1In recent
years, however, it has become clear that significant fundamental progress is possible
only if a nonlinear approach is taken. With this approach, the finitely many modes
are sought that, in the long term at least, carry most of the energy. Although many
introductory texts covering the requisite topics of bifurcation, stability,
catastrophe theory, etc. exist (e.g., Iooss and Joseph, 1980, or Guckenheimer and
Holmes, 1983), most are written from a mathematically formal perspective. An
introductory survey of the subject using relatively simple language is needed to
provide students of hydrodynamics with sufficient background to read these more
mathematical treatments. It is possible to avoid much of the formal mathematical
Jargon because the necessary basic theorems depend on elementary concepts requiring
only undergraduate-level knowledge of differential equations and linear algebra. It
is this approach that we adopt here to motivate and describe, without proof, the
results and applications of these theorems.

This monograph has a further purpose. As it becomes clear that nonlinear analy-
sis of systems of equations is necessary, it also becomes apparent that the analysis
would proceed more easily if the number of equations were small. The pioneer in this
area, which is known as low-order modeling, is Professor Edward N. Lorenz of the
Massachusetts Institute of Technology. In a series of studies covering a range of
fluid responses, he has discovered much about the fundamental nonlinear properties
of fluid flow by wutilizing various low-order systems of ordinary differential
equations. In‘this monograph, we use his 1963 model of Rayleigh—Bénard convection to
illustrate many of the necessary nonlinear concepts and calculations. Although it is
a simple matter to write a three- or five-coefficient system of equations, it is
often a distinct challenge to write one that is physically relevant. It is natural,

then, to ask whether any principles guiding model development could be created,



principles whose applfcation woula be’ based on nonlinear mathematical theory. In

this' monograph, we discuss a preliminary 1list of seven such principles and we
summarize many of the types of calculations that should be carried out to test
whether the model results are likely to be physically relevant. The results of these
calculations give us a wide variety of information, ranging- from the preferred
geometrical configuration of the flow to signals that the results are too restrictive
and that certain degrees of freedom therefore must be added to the system. Thus we‘
bring a new perspective to nonlinear yodeling, a perspective embodied in the concept
of metamodeling, or the study of the modeling process itseif, and we argué that its
application will allow us to create useful and relatively simple-to-analyze nonlinear
models 'of fluid behavior.

The initial manuscript upon which this . monograph is based was written in the
fall of 1984 by the 11 participants in.a.graduate meteorology seminar on nonlinear
hydrodynamics at The' Pennsylvania State University. This seminar was organ;zed by
Professors John A. Dutton and Hampton N. Shirer; the students were Dr. Steven B.
Feldstein, Mr. Ronald Gelaro, Mr. R. Wayne Higgins, Mr. Paul A. Hirschberg, Mr. Mark
&. Laufersweiler, Mr. Jon M. Nese, Mr. Robert J. Pyle, Mr. Arthur N. Samel, and Mr.
David J. Stensrud. Each participant was asked to give a lecture on one or more
topics and then to organize their material into a chapter for a set of notes. These
original chapters were used by the 14 participants in the fall of‘1985 seminar, who
gave lectures from and critically reviewed the initial manuscripts. On the basis of
these reviews, the notes were completely reorganized and rewritten in the form
presented here.

The chapters of the monograph are divided into four main groups-—Chapters 1 to 3
introducé the basic concepts of modeling and review the creation, development, and'
analysis of nonlinear models; Chapters 4 to 10 discuss various aspects of time-
independent, or stationary, so}utions to the ‘models; Chapters 11 to 14 review the:
behavior -of temporally periodic solutions; and Chapters 15 to 18 survey more
complicated temporal flows and the analysis of their properties.

Here we briefly summarize the major topics of each chapter. In Chapter 1, we
i discuss models and their purposes and we Qutline the seven modeling principles; four

we regard as fundamental to all models, with the remaining three being intermediate



their"branching properties can be determined via a ipower series analysis of the

differential system. Finally;'in Chapter 14, "we show how to extend the-notion of

asymptotic stability to one for temporally periodic solutions, and then we review the

three principal types of temporal solutions that bifurcate £rom the periodic ones.

In the remaining four chapters of the monograph, we consider more complicated '

temporal, or chaotic, flows; these flows have been proposed ' to model one form of
turbulence commonly observed in fluids. Several proposed routes along which a flow
might evolve toward a turbulent state are discussed in Chapter 15. Some measures of

the complicated structures of the chaotic solutions are introduced in Chapter 16. In

Chapter 17, we present a quite general review of the properties of the solutions to

some of the differential equations of atmospheric flows; and then we propose 'two ways

that optimum models might be created. Finally, in Chapter 18, we return to a
discussion of the elements .of the modeling process that provide the necessary
concep;s underlying metamodeling.

An undertaking of this magnitude would not be possible without the tireless
efforts of a large number of people. We are especially grateful to Professor Robert
Wells whose advice led to major improvements in the discussion throughout the
monograph. Professor Wells thoroughly read the entire manuscript and'offered a large

npmber of extremely helpful & suggestions. In addition, his help was essential in

implementing the Alexander-Yorke continuation method discussed in Chapter 10 as well

as in calculating the Lyapunov dimensions. in Chapter 16. We thank Professor John A.
Dutton, who reviewed and offered many useful comments on each chapter, as well as Dr.
Harry W. Henderson and Mrs. Tracy H. Hirschberg, who offered many critical comments
on the material in some of the chapters. Also, Professor Peter Kloeden kindly gave
us his notes from which Section 13.2 was written.

All of the authors helped to critique and ptoofread the manuscript; several,
especially Mr. R. Wayne Higgins, Mr. Paul A. Hirschberg, Mr. Mark J. Laufersweiler,

and Mr. Jon M. Nese, helped considerably with the host of other mundane tasks. Also,

" we thank the fall 1985 participants in the graduate seminar for their comments that’

led to greatly improved organization of the material: Ms. Shuyi Chen, Ms. Sharon

Douglas, Dr. Steven B. Feldstein, Mr. R. Wayne Higgins, Mr. Paul A, HirschBerg, Mrs.
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ones that must be incorporated eventually. We describe the modeling process in more
detail in Chapter 2, where we show how solutions to a simple model of a physical
system may possess the qualities outlined in the four fundamental principles. Then,
in Chapter 3, we review the Galerkin method for creating low-order dynamical systems,
or truncated spectral models, whose behavior we investigate in subsequent chapters.

Normally we begin analyzing nonlinear models by first studying their stationary
solutions. We show in Chapters 4 and 5 how determination of the asymptotic stability
properties of the stationary solutions may be used to identify the critical values of
the forcing at which transitions or bifurcations between stationary solutions occur.
Acceptable branching behavior is modeled by forms that satisfy certain physically
imposed constraints, and we review these in Chapter 6. In order that the solutions
to the models correspond to observed flows, some of the response parameters, such as
cell aspect ratio, must take preferred values, and the methods used to find these.
values are covered in Chapter 7.

We begin in Chapters 8 and 9 to cgnsider the three intermediate modeling
principles, that is we investigate whether model behavior is sensitive to additional
possible degrees of freedom. First, in Chapter 8, we show how to identify the
forcing parameters necessary for describing adequately all types of transitions; in
addition, we note how to identify the forcing effects that might serve as candidates
for any of the identified parameters not already in the problem as it was originally
posed. Hierarchies of transitionms are observed in many laboratory flows, and we see
in Chapter 9 how these can be modeled via secondary branching. We complete our
consideration of stationary solutions in Chapter 10, where we present a numerical
algorithm for determining all étationary solutions to a low-order model.

Certainly other types of solutions are possible, and in Chapters 11 to 14 we
consider temporally periodic ones. 1In Chapter 11, we discover how the creation of
these solutions 1s signaled by a type of stability exchange known as Hopf
bifurcation; in addition, we review the acceptable forms of these branching
solutions. As with stationary solutions, the observed characteristics of the
periodic solutions can be related to the preferred values of certain response
parameters, and we discuss how to find their values in Chapter 12. Although periodic

solutions cannot always be obtained analytically, we show in Chapter 13 that some of
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CHAPTER 1
MODELING: A STRATEGY FOR UNDERSTANDING

JOHN A. DUTTON

Science is the process by which humans attempt to comprehend, predict, and
perhaps control the environment in which they find themselves. It proceeds on a
number of levels, sometimes sequentially and sometimes simultaneously. Modeling is
the heart of the scientific enterprise, for it links together the phases of the
scientific endeavor.

The basic strategy of science is to convert facts or intuition gained by
observing objects or natural processes in our surroundings into conceptual and
quantitative structures that encourage and permit extrapolation of knowledge to new
circumstances. We effect this strategy by constructing models of the phenomena that
capture our interest.

Models, then, in a preliminary description, are devices that mirror nature in
some sense by embodying empirical knowledge in forms that permit inferences,
preferably quantitative, to be derived from them. Many branches of science have
evolved to a level in which the models employed are explicitly mathematical, perhaps
systems of differential equations, that can be treated in an axiom and theorem
formulation. In others, true theoretical study is not yet possible because the
essential state variables have not yet been perceived or invented.

This chapter is an introduction to the main concepts of modeling, which is a way
of codifying knowledge about our world; in a companion chapter, Chapter 18, we
examine metamodeling, which is the study of the process of modeling itself.

We shall first examine the role of modeling in scientific progress, and then
consider modeling in the context of the Earth Sciences, emphasizing the dynamics of
fluid systems —— the atmosphere and ocean -- in part because modeling is more
advanced in atmospheric and oceanic sciences than it is in the other Earth Sciences.
We shall find that although enough has been done that we can take a formal view of
our accomplishments, many challenges remain. The hope and motivation of the present
approach is that the formal study of models and modeling may stimulate the develop-

ment of higher-level and more effective strategies for future work.




1.1 Modeling Motivations and Issues

Scientifip'study of a natural object or phenomenon proceeds through a number of -

usually diétinctl but interactive phases. They can be described as (see box below

for accompanying definitions):
° Exploratiép and‘discovery
® dbservation
® ‘Formulation of descriptive'or empirical models
° Development and verification of theories or inferential models
concerning the state vafiables and their evolution
° Simulation and prediction of phehomenological behavior
[} Modification of pﬁenbmenological behavior in the physical world
The first two phases may be described, pgrhaps loosely, as pre-modeling stages;

the next two explicitly involve the development, refinemgnt, and verification of

: ﬁpdels. The last two stages are made possible by the existence of reliable and

efficacidus models.

f

The interaction of the phases of science is illustrated in Fig. 1.1.

Empirical knowledge is developed by exploration, discovery, and observation, and is

then codified in descriptive models or by theoretical assimilation and summary.

" Quantitative qnderstanding embodied in theories can be converted into models that

foster the quantitative inferences of simulation and prediction. The attempt  to

DEFINITIONS )
Theory --
A speculative or established explanation accounting for known facts or
- phenomena, often expressed in. the physical sciences in a symbolic or
mathematical form that emphasizes the evolution of state variables
describing the system of interest. ‘
Descriptive Model —-

A representation of structure or process in a descriptive, graphical,
or statistical form.

Inferential Modél e
An  implementation of a theory in .a form that fosters inference,

especially quantitative, about a specific collection of phenomena or
processes.’




