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PREFACE

AMID all the current interest in modern algebra, field theory
has been rather neglected—most of the recent textbooks
in algebra have been concerned with groups or vector
spaces. But field theory is a very attractive branch of
algebra, with many fascinating applications; and its central
result, the Fundamental Theorem of Galois Theory, is
by any standards one of the really “ big” theorems of
mathematics. This book aims to bring the reader from
the basic definitions to important results and to introduce
him to the spirit and some of the techniques of abstract
algebra. It presupposes only a little knowledge of element-
ary group theory and a willingness on the reader’s part to
remember definitions precisely and to engage in close
argument.

Chapter 1 develops ab initio the elementary properties
of rings, fields and vector spaces. Chapter 2 describes
extensions of fields and various ways of classifying them.
In Chapter 3 we give an exposition of the Galois theory
of normal separable extensions of finite degree, closely
following Artin’s approach. Chapter 4 provides a wide
variety of applications of the preceding theory, including
the classification of all fields with a finite number of elements,
. ruler-and-compasses constructions and the impossibility of
solving by radicals the generic polynomial of degree greater
than 4.

1 had the great good fortune to persuade my colleague
Dr Hamish Anderson to read the first draft of this book,
and as a result of his careful scrutiny and penetrating
comments many blemishes were removed; I am deeply
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grateful to him for his invaluable help. In preparing the
book for the press I have had the assistance of Dr Joan
Aldous, Mr William Blackburn and Mr Brian Kennedy,
and I gratefully acknowledge this here. It is a pleasure
also to record my great gratitude to Professor D. E.
Rutherford, whose lectures on groups first aroused my
interest in algebra, for his constant encouragement and
help at all stages in the preparation of the book. Finally
I must not forget to thank several generations of honours
students in The Queen’s University of Belfast and Queen’s
College, Dundee who patiently listened to and commented
on the successive lecture courses which eventually turned
into this book; one of them in particular, in a spontaneous
exclamation, provided me with an appropriate conclusion
to Chapter 4.

IaiN T, ADAMSON

*DUNDEE
August 1964
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CHAPTER 1

ELEMENTARY DEFINITIONS

§ 1. Rings and fields. Modern algebra, of which field
theory is a part, may be very roughly described as the study
of sets equipped with laws of composition. To amplify this
description we make the following definition: a law of
composition on a set E is an operation which assigns to
every ordered pair (g, b) of elements of E a definite element
of E which may be denoted by a+b, in which case it is
called the sum of @ and b and the operation is called
addition, or alternatively by axb or a.b or simply ab,
in which case it is called the product of @ and b and the
operation is called multiplication. Quite clearly ordinary
addition and multiplication of real numbers are laws of
composition on the set of real numbers R.

When we wish to discuss laws of composition in general,
we use a “ neutral ”’ symbol, such as aob, to denote the
result of applying the law of composition to the ordered
pair (a, b). With this notation we make some further
definitions. A law of composition on a set E is said to be
associative if for every three elements a, b, ¢ of E we have
ao(boc) = (aob)oc; it is said to be commutative if for
every pair of elements @, b of E we have aob = boa.
If for any two elements ¢, d of E we have cod =doc
then ¢ and d are said to commute. An element n of E is
called a neutral element for the law of composition if
noa = a = aon for every element a of E; if the additive
notation is used, a neutral element is called a zero element
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and is usually denoted by 0, and if the multiplicative
notation is used, a neutral element is called an identity
element and is denoted by e or 1. If a is an element of E,
an inverse of a relative to a law of composition for which
there is a neutral element » is an element a’ of E such that
aoda =n=da oa; when the additive or multiplicative
notations are used we write —a or a~ ! respectively instead
of a’. Ordinary addition and multiplication of real numbers
are both associative and commutative; the real numbers
0 and 1 are neutral elements for addition and multiplication
respectively; every real number has an inverse relative to
addition and every real number except 0 has an inverse
relative to multiplication. Addition and multiplication of
real numbers have a further property: for every three real
numbers a, b, ¢ we have

a(b+c) = ab+ac and (b+c)a = ba+ca.

We say that the multiplication is distributive Wlth respect
to the addition.

Readers of this book will require to have some familiarity
with the elementary theory of groups, as contained in
practically any introductory text in modern algebra. We
recall here that a group is a set G equipped with an
associative law of composition such that

(1) thereisa neutral element for the law of composition;

(2) every element has an inverse relative to the law of
composition.

It is unnecessary to state explicitly the “closure’ property
mentioned by some writers on elementary group theory,
since it is built into our definition of a law of composition
on G that the result of applying the law to a pair of elements
of G is again an element of G. If the law of composition
of a group is commutative, the group is said to be abelian.
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A ring is a set R equipped with two laws of composition,
which we shall call addition and multiplication, such that
the following conditions are satisfied :

Al. The addition is associative, i.e., for every three
elements a, b, ¢ of R we have a+(b+c) = (a+b)+ec.

A2. The addition is commutative, i.e., for every palr
of elements a, b of R we have a+b = b+a

A3. There is a neutral element for the addition, i.e.,
an element, which we call zero and denote by 0, such that
for every element a of R we have a+0 = a = 0+a.

Ad. Every element a of R has an inverse relative to
the addition, i.e., an element which we denote by —a
such that a+(—a) = 0 = (—a)+a.

M1. The multiplication is associative, i.e., for every
three elements a, b, ¢ of R we have a(bc) = (ab)c.

AM. The multiplication is distributive with respect to
the addition, i.e., for every three elements a, b, ¢ of R
we have a(b+c¢) = ab+ac and (b+c)a = ba+ca.

A ring R is called a commutative ring if, in addition
to the defining properties of a ring, it satisfies the further
condition:

M2. The multiplication is commutative, i.e., for every
pair of elements a, b of R we have ab = ba.

A ring R is called a ring with identity if it satisfies the
conditions Al, A2, A3, A4, M1, AM and the further

condition:

M3. There is a neutral element for the multiplication,
i.e.,, an element e, which we call the identity of R, such
that for every element a of R we have ea = a = ae.

Finally, a commutative ring with identity is called a
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field if it contains at least two elements and satisfies all
the conditions listed so far, together with the following:

M4. Every non-zero element a of R has an inverse
relative to the multiplication, i.e,, an element a~! such
that aa™' = e = g™ 'a.

A field F is said to be finite or infinite according as
the number of elements of F is finite or infinite.

Example 1. The most familiar example of a ring is
the set of ordinary integers (positive, negative and zero)
equipped with their ordinary operations of addition and
multiplication; we shall always denote this ring by Z. It
is a commutative ring with identity (the number 1 is clearly
the identity), but not a field—indeed the only integers with
multiplicative inverses in Z are 1 itself and —1.

Example 2. The sets of rational numbers, real numbers
and complex numbers, with the ordinary definitions of
addition and multiplication, are easily seen to satisfy all
the conditions for fields. We denote these fields respectively
by Q, R and C. ‘

Example 3. 1If Ris any ring and n is any positive integer,
then the set of n x n matrices with elements in R, equipped
with ordinary matrix addition and multiplication, is a ring
which we denote by M,(R). The ring M,(R) is in general
not commutative; it has an identity if R does.

Example 4. Let m be any positive integer greater than
1; if @ and b are integers such that a—b is divisible by m
we say that a is congruent to » modulo m, and we write
a = bmod. m. The residue class of an integer ¢ modulo m
is the set of all integers congruent to @ modulo m; it is
clear that there are exactly m distinct residue classes, since
every integer is congruent modulo m to precisely one of
the integers 0, 1, ..., m—1. We denote the set of residue
classes modulo m by Z,, and we proceed to turn it into a
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. ring by defining appropriate operations of addition and
multiplication. Let C, and C, be any two residue classes;
choose any integer a, from C, and any integer a, from C;;
we define C,;+C, and C,C, to be the residue classes of
a,+a, and a,a, respectively. At first sight it appears
that these residue classes may depend upon the choice of
a, and a,, but we shall show that this is not in fact so.
Namely, if by, b, are integers in the residue classes C;, C,
respectively, then a, = b, and a, = b, mod. m, and so there
are integers k, and k, such that a; = b,+kym and
a, = b, +k,m. Itfollowsthata,+a, = by+b,+(k, +ky)m
and a,a, = b;by+(k b, +k,by +kikm)m; so we have
a,+a, = b,+b, mod. m and aya, = b;b, mod. m. Thus
a,+a, and b, + b, belong to the same residue class modulo
mand so do a,a, and by b,. Hence C;+ C,and C,C, depend
only upon C, and C, and not upon the choices involved
in their definition.

It is easy to verify that with these laws of composition
Z, is a commutative ring with identity; the zero and
identity elements O and E are the residue classes contain-
ing the integers 0 and 1 respectively, and the additive
inverse of the residue class containing a is the residue class
¢ontaining —a.

We say that an integer is relatively prime to m if it has
no factor in common with m except 1 and —1. It is clear
that if one integer in a residue class C modulo m is relatively
prime to m then so are all the integers in C; in this case
we say that C is a relatively prime residue class. Let R,
be the set of relatively prime residue classes modulo m.
We shall now show that a residue class modulo m has
a multiplicative inverse in Z,, if and only if it belongs
to R,..

Suppose first that the residue class C has a multiplicative
inverse C’ in Z,,; then CC’ = E, and so, if a and a’ are
integers in C and C’ respectively, we have aa’ = 1 mod. m.
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Thus there is an integer k such that aa’ + km=1. It
follows that if r is any common factor of a and m then r
is a factor of aa’+km = 1; hence r is either 1 or —1.
So if C has a multiplicative inverse in Z,, C belongs to
R,. We note incidentally that since C" also has an inverse
in Z,, (C is the inverse of C’), C’ also belongs to R,,.

Conversely, suppose that C belongs to R,,; we shall
show that C has a multiplicative inverse in Z,. To this
end we choose an integer a from C; then a is relatively
prime to m. We now consider the set of positive integers
which can be expressed in the form xa+ym where x and
y are integers. This set is clearly non-empty and hence
contains a least element, d = x,a+y,m say. Dividing a
by d we obtain integers g, r such that a = qd+r, 0=r<d;
from this it follows that

r = a—q(xoa+yom) = (1-gxp)a+(—gqyo)m.

If r were non-zero this would contradict our choice of d
as the least positive integer of the form xa+ym; hence
r = 0 and d is a factor of . An exactly similar argument
shows that d is a factor of m. Thus d is a positive common
factor of @ and m and so d = 1. We have now shown
that there exist integers x, and y, such that x,a+y,m = 1,
whence xpa = 1 mod. m. Hence if C’ is the residue class
of x, modulo m we have CC’' = E; that is to say, C' is
a multiplicative inverse of C.

Since the product of two integers relatively prime to
m is also relatively prime to m it follows that the product
of two residue classes in R,, is also in R,,; thus the multipli-
cation in Z,, is an associative law of composition on R,,.
The identity residue class E belongs to R,, and the preceding
arguments show that every residue class in R,, has a
multiplicative inverse which is also in R,,. It follows that
R,, equipped with the multiplication operation of Z,, is
an abelian group.

Example 5. Let p be a prime number and form the
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ring Z, according to the procedure described in Example 4;
we claim that Z, is a field. Since we have already proved
that Z, is a commutative ring with identity, the only
property which remains to be established is M4. But this
follows at once from our discussion in Example 4 since
every non-zero residue class modulo p is relatively prime.

§ 2. Elementary properties. We notice that conditions
Al to Ad can be summed up by saying that the set of
elements of a ring R, equipped only with the addition
operation, forms an abelian group. This group is called
the additive group of the ring and is denoted by R*.

It is easy to show that the zero element 0 of R and
the additive inverse —a of each element a of R are unique.
Suppose first that 0 and O’ are zero elements. Then
0+0" =0 (since 0 is a zero element) and 040" = 0
(since O is a zero element); hence 0 = 0’. Next suppose
—a and 4’ are additive inverses of a. Then we have
(@+a)+(—a) = 0+(—a) = —a (since a’ is an inverse)
and (@'+a)+(—a) = d' +(a+(—a) =a'+0 =a’ (since
the addition is associative and —a is an inverse); hence
a' = —a. It now follows at once that for every element a
of R we have —(—a) = a; for both these elements are
additive inverses of —a.

The existence of an additive inverse for every element
in a ring implies that in a ring subtraction is always possible.
For the problem of subtracting an element b from an
element a can be reformulated as the problem of finding
an element x such that a = x+b; and clearly x = a+(—b)
satisfies this requirement, since

(@+(-b)+b =a+(—b)+b) =a+0 = a.

We usually abbreviate a+(—b) to a—b. Since the addition
operation in a ring is commutative, we have a—b = (—b)+a.

Although the zero element of a ring is originally singled
out for special attention by virtue of its additive property,
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the distributive condition AM implies that it also enjoys
the multiplicative property which we are accustomed to
associate with the real number zero—namely, that if one
of the factors in a product is zero then the product is zero.
So let a be any element of R; we shall prove that a0 = 0.
Since 0 is a neutral element for addition, we have 0+0 = 0
and hence a(0+0) = a0. Using AM we deduce that
a0+a0 = a0. Now, by Ad, a0 has an additive inverse
—(a0); adding — (a0) to both sides, we obtain

—(a0)+ (a0 +a0) = —(a0)+a0 = 0.

Applying the associative condition Al on the left side, we
have (—(a0)+a0)+a0 = 0, whence 0+40 = 0, i.e., a0 =0
as we claimed. Similarly we may show that Og¢ = 0 for
every element a of R. It follows that in a field the zero
and identity elements 0 and e are distinct; for if a is a
non-zero element we have a0 = 0, but ae = a.

Rather similar arguments can be used to prove that if a
and b are any two elements of a ring R then a(—b) = —(ab),
(—a)b = —(ab) -and (—a)(—b) = ab. For example, to
establish the first of these, we notice that b+(—5) =0
and hence a(b+(—b)) = a0. Thus, by AM and what we
have just proved, ab+a(—b) = 0; so a(—b) is an additive
inverse of ab. But —(ab) is the unique additive inverse of
ab; hence a(—b) = —(ab). The other results are obtained
by analogous arguments.

We have shown for every ring R that if one of the
factors in a product of elements of R is zero then the
product is zero. The converse of this result is not true
in general; for example, in the ring M,(C) of 2 x 2 matrices
with complex elements, we have

P PO

The converse is true, however, in the case of fields. For,
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suppose a and b are elements of a field F such that ab = 0;
we shall show that either a = 0 or & = 0—in other words,
that if a is non-zero then b = 0. If a is non-zero, then it
has a multiplicative inverse a~!. Multiplying by a~' we
obtain a~'(ab) = a~'0, and hence, by M1,

b=ceb=(a"'a)b=a'(ab)=a"10=0.

This discussion shows that the product of two non-zero
elements of a field is non-zero. Hence in a field the
multiplication operation is a law of composition on the
set of non-zero elements. Conditions M1, M2, M3 and
M4 now imply that the set of non-zero elements of a
field F, equipped only with the multiplication operation,
forms an abelian group. We call this group the multi-
plicative group of the field F and denote it by F*. By
arguments similar to those used in the additive group we
can easily establish that the identity element e and the
multiplicative inverse of each non-zero element of a field
are 1unilque, and that, for every non-zero element a of F,
@) '=a : ;

Finally, in a field F, division (except by the zero element)
is always possible. To divide an element a by a non-zero
element b we must find an element x such that a = xb;
x = ab~! clearly satisfies this requirement. Since the
multiplication operation in a field is commutative, we have
ab~! = b~'a. We frequently use the *“ fraction ” notation
a/b instead of ab~".

Let F be any field. We now define an operation which
assigns to each integer n and each element a of F an element
of F which we denote by na. We make the definition
inductively by setting

(i) 0a = 0;
(ii) (k+Da = ka+a for all integers k=0;
(iii) (—=k)a = —(ka) for all integers k>0.



