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PREFACE

After R. Descartes, I. M. Gelfand, and A. Grothendieck, it became a truism
that any commutative ring is a ring of functions on an appropriate space.

Noncommutative algebra resisted geometrization longer. A recent upsurge
of activity in this domain was prompted by various developments in theoret-
ical physics, functional analysis, and algebra.

When I was invited to give the Milton Brockett Porter Lectures at Rice
University in the fall of 1989, I decided to give an introduction to some cur-
rent ideas in noncommutative geometry. This book was prepared before the
lectures and contains more material than could be presented orally. Still, I
tried to preserve some spirit of lecture notes, especially in the first chapter,
which intends to be an overview of various points of departure and basic
themes. The rest of the book is more specialized. Chapters 2 and 3 are de-
voted to supersymmetric curves and flag spaces of supergroups, respectively.
Chapter 4 develops an approach to quantum groups as symmetry objects in
noncommutative geometry initiated in my Montreal lectures [Ma2].

Section 1 of Chapter 1 can be read as an introduction to the entire book.
The rest of Chapter 1 gives some definitions, examples, and constructions
but contains practically no proofs. It should be considered a guide for further
reading.

Starting with Chapter 2, we prove most of the results. The choice of
material was dictated by personal interests of the author. Exposition is based
upon lecture courses and seminars I have led for several years at Moscow
University and elsewhere. Partly it is taken from the papers of participants
of these seminars or based upon their notes.

I want to thank many people for friendly collaboration and shared insights,
especially A. A. Beilinson, V. G. Drinfeld, D. A. Leites, I. B. Penkov, A.
O. Radul, I. A. Skornyakov, A. Yu. Vaintrob, A. A. Voronov, M. Wodzicki.

I would also like to thank Utrecht University and the Netherlands Math-
ematical Society for their hospitality during my visit in January 1988 and
the Netherlands Organization for Scientific Research (ZWO) for financial
support, which enabled me to write part of this book. Finally, I would like
to thank a referee who suggested a number of corrections and revisions
incorporated in the text.

Yuri I. Manin
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CHAPTER 1

An Overview

1. Sources of Noncommutative Geometry

1.1. COMMUTATIVE GEOMETRY. The classical Euclidean geometry stud-
ies properties of some special subsets of plane and space: circles, triangles,
pyramids, etc. Some of the crucial notions are those of a measure (of an an-
gle, distance, surface, volume) and of “congruence” or equality of geometric
objects.

An implicit basic object that only a century ago started to become a subject
of independent geometric study is the group of motions. In fact, measures
can be introduced as various motion invariants, and equality can be defined
in terms of orbits of this group.

Since Descartes, this geometric picture became enriched with an essential
algebraic counterpart, centered around the idea of coordinates. Subsets of
space can be defined by relations between the coordinates of points, mo-
tions by means of functions. Geometry can be systematically translated into
algebraic language.

Relations between coordinates are written in the form, say,

filxt,... %) =0, P €1 (or f; #0, 0r f; 20),

where the f; belong to a class O of functions on the basic space. This class O
depends on the type of geometric properties one wants to study. It may consist
of polynomials (algebraic geometry), complex-analytic functions (complex
geometry), smooth functions (differential geometry), continuous functions
(topology), and measurable functions (measure theory). In certain basic sit-
uations, the transcription of geometry into algebraic language is as neat and
simple as one can possibly hope. A classical example is Gelfand’s theorem,
which states (in modern words) that by associating to a locally compact Haus-
dorff topological space its x-algebra of complex-valued continuous functions
vanishing at infinity, we get an antiequivalence of categories. (The source
category should be considered with proper continuous maps as morphisms;
the essential image of the functor consists of commutative *-algebras and
*-homomorphisms.)

/



4 CHAPTER 1

Symmetries of a geometric object are traditionally described by its auto-
morphism group, which often is an object of the same geometric class (a
topological space, an algebraic variety, etc.). Of course, such symmetries
are only a particular type of morphisms, so that Klein’s Erlangen program
is, in principle, subsumed by the general categorical approach. Still, auto-
morphisms and spaces with large automorphism groups are quite special and
cherished objects of study in any geometrical discipline.

Since automorphisms of an object act on any linear space naturally asso-
ciated to this object (functions, (co)homology, etc.), this explains the role of
representation theory.

With traditional pointwise muitiplication and addition, many important
classes of functions form a commutative ring. This property seems to be
very crucial if we want to consider an abstract as a ring of functions.

Grothendieck’s algebraic geometry, via the notion of an affine scheme,
shows that there is no need, in general, to ask anything more (¢.g., absence
of nilpotents).

However, one can ask less.

Attempts to build geometric disciplines based upon noncommutative rings
are continuing. They have led already to various important, if disparate,
developments. In the following, we shall consider below some motivations
and approaches, stemming from physics, functional analysis, and algebraic
geometry. We make no claims of completeness at all and discuss mostly
subjects that appeal to the author personally.

1.2. PHYSICS. The basic symmetry group of Euclidean geometry has a
distinctly physical origin. In fact, it is the group of motions of a rigid body,
the latter notion being one of the pillars of classical physics, whose remnants
can be traced as late as in Einstein’s discussion of space-time in terms of
rulers-and clocks.

It is no surprise, then, that quantum physics supplied its own stock of
basic geometries. We shall not be concerned here with already traditional
Hilbert space geometry but rather with more recent developments connected
with supergeometry and quantum groups.

Supergeometry is a variant of classical (differential, analytic, or algebraic)
geometry in which, together with the usual pairwise commuting coordinates,
one considers also anticommuting ones. The latter correspond to the internal
(spinlike) degrees of freedom of fermions, elementary constituents of matter
such as electrons and quarks, whereas commuting coordinates are used to
describe their “external,” space-time position. Since anticommuting coordi-
nates are nilpotents, supergeometry looks like a very slight extension of the
classical geometry. This does not mean at all that it is a trivial extension. It
reveals a lot of very concrete new structures whose resemblance to the old
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ones is beautiful and fascinating. In particular, a fundamental role is played
by the “supersymmetry” mixing even and odd coordinates. This notion cannot
be made precise in terms of classical group theory; in fact, supersymmetry
is described by Lie supergroups, or, infinitesimally, Lie superalgebras. The
classification of simple Lie superalgebras, due to V. Kac ([K1]), demon-
strated the existence of a quite unexpected extension of the Killing-Cartan
theory and drew the attention of mathematicians to supergeometry, whose
first constructions were invented by physicists Yu. Golfand, E. Lichtman,
A. Volkov, J. Wess, and F. Berezin.

In this book, Chapters 2 and 3 are devoted to supergeometry. We have
chosen not to explain foundations and first examples, but to develop two
concrete and fairly advanced subjects: a theory of supersymmetric algebraic
curves and a theory of Schubert-Bruhat decomposition of superhomogeneous
flag spaces. We assume that the reader is familiar with Chapters 3 and 4
of [Mal] containing an introduction to supergeometry. The exposition in
Chapter 3 closely follows [VM].

Quantum groups could have been, but were not, invented in the
same way as supergroups, i.e., as symmetry objects of certain “quantum
spaces,” described by noncommutative rings of functions. Actually, they
originated in the work of L. D. Faddeev and his school on the quantum
inverse scattering method (cf. [SkTF], [Drl], and references therein).

An intuitive notion of a quantum space is based upon one of the schemes
of quantization of classical Hamiltonian systems. Namely, one replaces the
classical algebra of observables, consisting of functions on a phase space, by
a quantum Lie algebra of observables consisting of the same functions with
the Poisson bracket instead of multiplication, and a unitary representation of
this algebra. One can imagine the universal enveloping algebra of this Lie
algebra (or its exponentiated form) as a noncommutative coordinate ring of
the quantized initial phase space. :

Into any concrete description of the quantum commutation rules enters a
small parameter # (Planck’s constant). (Of course, since it is not dimension-
less, its “smallness” means rather that a characteristic action of a system of
macroscopic scale is large when measured in units of 4.) This means that
one algebraic approach to noncommutative spaces and quantum groups is
via deformation theory. The most intensively studied quantum groups up to
now are represented by the deformations Uj,(g) of the universal enveloping
algebras of classical simple (or Kac-Moody) Lie algebras g.

We present an introduction to this approach to quantum groups in Section 3
of this chapter. Chapter 4 presents quantum groups as symmetry objects of
quantum spaces.

Algebraically, there is a subtle difference between supergroups and quan-
tum groups. Formally speaking, quantum groups are Hopf algebras, virtually

/



6 CHAPTER i

noncommutative and noncocommutative, while supergroups are Hopf super-
algebras, supercommutative if represented by the function rings. A difference
in the axioms of these two types of objects is best understood if one writes
them down in an abstract tensor category (cf. [DM]) and realizes that quan-
tum groups are constructed over a tensor category of usual vector spaces,
whereas supergroups are based upon a different tensor category of Z,-graded
spaces with the twisted permutation isomorphism Sq2) : V QW — W QV.
One may well combine both variations and define quantum supergroups (cf.
Chapter 4).

Section 4 of this chapter is devoted to some basic facts concerning monoid-
al, tensor, and pseudotensor categories whose role in understanding quan-
tum groups stems also from a generalization of the Tannaka-Krein duality.
Namely, a very important role is played by those quantum groups for which
braid groups act naturally on tensor powers of representation spaces. Such
an action is described by solutions of Yang-Baxter equations that emerged
in two-dimensional statistical physics and recently became related also to
two-dimensional conformal field theories.

1.3. FUNCTIONAL ANALYSIS. A functional-analytic approach, vigorously
pursued in recent years by Alain Connes and his collaborators, starts with
two remarks. First, due to Gelfand’s theorem, cited earlier, one can take non-
commutative C*-algebras as a natural category for noncommutative topol-
ogy. Second, there is a supply of quite common geometric situations leading
to such algebras.

In [C2] and [C3], Connes suggests the following examples.

(a) Let ¥ be a smooth manifold, F a smooth foliation on V. The leaf space,
V /F, of course, exists as a topological space but is very far from being a
manifold, and its properties cannot be described by conventional means. It is
suggested that its topology is encoded in the C*-algebra C*(V, F) defined,
e.g., in [C4]. A

(b) Let I be a discrete group. The topology of the reduced dual space I'
is described by the norm closure of CI' in the algebra of bounded operators
in 12(T"), that is, by a C”-algebra C}(T").

(c) One can treat similarly the topology of quotient spaces ¥ /T" and V /G,
where I' (resp. G) is a discrete (resp. Lie) group acting upon a smooth
manifold V. In these cases, the C*-algebra in question is a crossed product
of a function algebra of ¥V with T" (resp. G).

What kind of invariants of an algebra 4 should be qualified as topological
invariants of an imaginary noncommutative space corresponding to A?

First, there are K-theoretical invariants. A general principle discovered
first in algebraic geometry is that the topology of a usual (“commutative”)
space is encoded in the category of the vector bundles of this space, which
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in its turn is equivalent to a category of projective 4-modules, where A is
an appropriate function ring. K-groups are constructed directly in terms of
this category.

Second, there are differential-geometric invariants embodied in the de
Rham complex of A. This complex calculates (co)homology and contains
some information on homotopical properties. K-theory and (co)homology
are connected by the Chern character.

In [C3], Connes develops these ideas in a very broad context and, in partic-
ular, investigates the so-called cyclic cohomology groups of a ring, which he
introduced in connection with his noncommutative de Rham complex. This
very important construction. was independently invented by B. L. Tsygan as
an additive analog of K-theory (cf. {T], [FT}).

One of the latest most important developments is due to M. Wod-
zicki. His theory of noncommutative residue was reported in [Kas); cf. his
original work [W1]}-[W3].

In Section 2 of this chapter, we review more algebraic parts of Connes’s
work, referring the reader to the bibliography for further reading.

1.4. ALGEBRAIC GEOMETRY. Turning to algebra-geometric sources of
noncommutative geometry, one must confess that although its general influ-
ence was very significant, concrete endeavors to lay down foundations of
noncommutative algebraic geometry Grothendieck-style were unsuccessful
(but see [Ro]). One stumbling block invariably was noncommutative local-
ization. The point is that whereas, say, a smooth manifold is described by its
algebra of global smooth functions, an algebraic variety is not described by
its algebra of polynomial functions unless it is affine. Hence, we must have
functions that are defined only locally, and for this we probably need tangi-
ble geometric objects on which such functions are defined as local models.
Notice that in Connes’s approach, we have no local models: His C*-algebras
are connected with such spaces as V' /F in a rather indirect way and are not
readily visualized as functions on them.

Since attempts to glue together noncommutative algebraic spaces from
affine ones generally fail, we have to resort to more particular cases and to
learning lessons of other approaches.

For example, one can define some analogs of affine algebraic groups,
following the lead of the theory of quantum groups, and study them as in
classical algebraic geometry. In doing so, we discover that there are very
special values of deformation parameters that, on the one hand, correspond
to nontrivial representation theories and, on the other hand, lead to function
rings that are almost commutative, that is, have large commutative sub-
rings. One may try to use these subrings for constructing geometric spectra
and localizing with respect to them so that the rest of the algebra becomes

7/



8 CHAPTER 1

encoded in the structure sheaf on an actual space. Lessons of supergeometry
may be quite helpful here.

Chapter 4 of this book will develop this viewpoint. For further reading,
we recommend a very interesting recent work by B. Parshall and J.-P. Wang,
“Quantum Linear Groups,” Parts I and II, University of Virginia preprints,
1989.

2. Noncommutative de Rham Complex and Cyclic Cohomology

2.1. CycLes. Following Connes [3], we shall call an n-cycle a triple
(Q,d, f), where Q = @]_, <V is a graded C-algebra, d is its graded deriva-
tion of degree 1,d? = 0, and J 1 Q" — Cis a closed graded (super)trace,
i.e., a linear functional satisfying the following identities:

/dw =0 forall we Q!
/ww’ = (—l)deg(w)deg(“")/w'w.

2.2. EXAMPLES. (a) Let X be a compact smooth oriented n-dimen-
sional manifold, (Q(X),d) its de Rham complex over C, [ the integral
of volume forms over X. It is an n-cycle.

More generally, consider a closed g-current C on X . Then (7 o (X)),
d,[ ={(C,.))is a g-cycle.

(b) For an associative C-algebra A4 and a linear functional tr : 4 — C with
tr([4, A]) = 0, the triple (4 = Q = P, tr) is a O-cycle.

(c) By replacing [ by — [ in a cycle, we, by definition, change its orien-
tation. .

Direct sum of two cycles is defined in an obvious way. The following

example describes a functional-analytic situation leading to cycles.

2.3. FREDHOLM MODULES. Let A be an associative C-algebra, H =
Hy @& H, a 1,-graded separable Hilbert space, endowed with an odd bounded
C-linear involution F. Assume that H is also endowed with a structure of
the left A-module such that A4 acts by even bounded operators.

Then (A4,H,F) is called an n-summable Fredholm A-module if [F,a] =
Fa —aF € L*(H) for all a € A, where L"(H) is the so-called n-th Scharten
ideal, consisting of those bounded operators T, for which |[T|* is of trace
class, |T| = (T*T)'/2.

Given such a module, we can construct the following n-cycle. Put 0 =4;
Q9 = closure of the linear span in L*/4(H) of the family of operators
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(@ + X -id)[F,a'][F,d?]...[F,a?] where @' € A, A € C. Define d by
dw = i[F,w]. Finally, for w € ", put

/w = (—~1)" trace(w).

Axiomatizing essential algebraic features of this situation, Connes arrives at
the following abstract construction.

2.4. THE NONCOMMUTATIVE DE RHAM COMPLEX. For a fixed associa-
tive C-algebra A4, with or without identity, consider all algebra homomor-
phisms f : A — P, where Q° is the 0-component of a differential graded
unitary algebra (Q2,d). We do not assume that f transforms the identity of
A (if any) into the identity of (.

These homomorphisms form a category with an initial object. Here is its
direct construction.

O = A = A®Cl (formal adjunction of identity);
M =A4QA%" (tensor products over C);
d((@+A1)®d' ®..09d")=18a"Rad' ®... ®a";
in particular, da =1 ®a for a € 4;
the multiplication map Q" ® " — Q”*" is uniquely defined by the
following conditions: for m = 0, it is the standard A- multiplication
on the leftmost tensor factor of ", the Leibniz formula holds.
As an example, let us multiply @° ® a' by 5% ® b', where @® =a® + A - 1,
B =50 + R
@ ®a)(® @b') = (a°da')(b°db') = &°(da'b°)db'
=a"[d(a't’) —a'db’\db'
=a% (a'b%)db" — (a°a")db°db!
=" ®ad'" @b -dla' @ @b’

Here is a general formula for right multiplication by A:

@®ad'®..0ab=) (-1)7de.. .0dd"e...0b
=0

Although this noncommutative de Rham complex has many properties in
common with the usual one, it should not be considered as a “final solution.”
In fact, in Chapter 4, we shall see that in the category of quadratic algebras,
for example, a natural substitute for the de Rham complex is one of the four
Koszul complexes, having a very different structure.
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2.5. TRACES. In order to complete a (truncated) de Rham complex
(Q259(A4),d) to a cycle, we need a trace functional. If such a functional
J : ©8(4) — C is given, consider a linear map 7 : 4%7 — A* (here the
asterisk means linear dualization),

@' ®...0a%) ") =/a°dal ...dal.

Connes has shown that T satisfies certain functional equations that can best
be expressed by saying that T is a cocycle of a very important complex, and
that this correspondence between traces and cocycles is one-to-one.

To explain this result in a natural generality, we shall digress and start
with the notion of a cyclic object of an abstract category.

2.6. CycLIc OBJECTS. First recall that a simplicial object of a category
C is a functor A® — C where A is the category of well-ordered finite sets
[n] ={0,1,...,n} with nondecreasing maps as morphisms.

Following Connes, we similarly define a cyclic object of C as a functor
A® — C, where objects of A are

{n} = roots of unity of any degree n + 1,

and morphisms are defined by any of the following equivalent ways.
By writing & instead of exp(2wik/(n + 1)), introduce on {n} the cyclic
order0<1<2<---<n<0.

VARIANT I.  Homy ({n}, {m}) = the set of homotopy classes of continu-
ous cyclically nondecreasing maps ¢ : S' — S' such that o({n}) C {m}.
Here ' = {z € C| |z| = 1}, and homotopy is considered in the same class
of maps.

VARIANT 2. A morphism {n} — {m} is a pair consisting of a set-
theoretical map f : {n} — {m} and a set o of total orders, one on each
fiber f~'(i),i € {m}. They must satisfy the following condition: The cyclic
order on {n} induced by the standard cyclic order on {m}, and o should
coincide with the standard cyclic order on {n}.

The composition rule is: (g,7)(f,0) = (gf,70), where i < j with
respect to 7o if either f(i) < f(j) with respect to 7, or f(i) = f(j) and
i < j with respect to o.

A given f can be extended to a morphism in A iff it is cyclically nonde-
creasing. This extension is unique unless f is constant, in which case there
are n + 1 extensions.

VARIANT 3.  Morphisms in A are given formally by the following sets of
generators and relations.

OVERVIEW 1

Generators:

6,‘;:{n—1}—>{n}; af,:{n-f—l}—*{"}; T i {n} — {n}.

Relations:
88 =887 for i<

alor,, =aioddtl for i<

n+1
6};#:; for i< j;
Urln‘srlwl =4 id for i=jorj+1,;

§i~lod | for i>j+1;

i _ si-l .
Ty =8 Ty for i=1,....n;

. - _
TaOp =0y Tayy for i=1,... n
7t = id. .

In terms of the previous description, & omits i; o, takes the value i twice;
Ta(j) = Jj + 1. Only for 0y, we must fix an order on a fiber: it is 0 <1l

Remarkably, A is isomorphic to A°. The isomorphism is identical on
objects and acts as follows on morphisms: If, in the second description,
() : {n} = {m}, we define (f, )" = (g,7) : {m} — {n} by

g(i) =o — minimal element of f~'(; ) where j is the maximal
element of f~'(j) cyclically preceding i.

An additional piece of information is needed only if g is constant. This

happen;» precisely when f is constant. Then 7 is defined by the condition
that f is the 7-minimal element of {n}.

2.7. CycLic COMPLEXES. Letnow E = (En\dl,s?,t;) bea cyclic object

. H
of an abelian category, where d s, t, respectively, correspond to 6, ¢, 7. Put

n

d" = "(~1Yd! : Ey — E,_;
i=0
n—1

d"=N"(-1)d! :E, ~ E,_,;
v

n
= (—1)"1,, E, —E;;N =Zti'
i=0
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First of all, (E,,d") and (E,,d"") are complexes. Since d (1 —¢) = (1-t)d’,
they can be combined in the following bicomplex: '

d.l —d.’i d'i

E 2 5 YL g ¢
d] —d'] d|
E & E L g =
d| —-d'| d)

B ¥ E % g
Denote by C - E the associated complex and define the cyclic homology
HC - (E) of the cyclic object E as H(C - E).

If multiplication by n + 1 is an isomorphism of E, for all n, the rows of
the bicomplex are exact everywhere except the leftmost column. Thus, in
this case, HC - (E) = H(E - /(1 —t)E-).

A cocyclic object of C can be defined dually as a functor E : A — C.
If C is abelian, one can repeat the previous construction with the arrows
reversed. In this way, we obtain the cyclic cohomology HC (E).

2.8. CycLIC COHOMOLOGY AS A DERIVED FUNCTOR. Suppose that C
is the category of k-modules over a commutative ring k. Denote by Ak an
object of the category AC of cocyclic objects of C, all of whose components
are k and all of whose morphisms are identical.

AC is an abelian category, and

HC*(E) = Ext, - (Ak,E).

One can similarly treat cyclic homology as a certain Tor--functor. These
results can be generalized to the abstract categories admitting a unit object
1 (similar to &) and internal Hom of diagrams.

2.9. CONNECTION WITH THE HOCHSCHILD HOMOLOGY. Let A be an
algebra over a commutative ring containing Q. We can define a cyclic object
A with the ith component A®(+1) and the following structure morphisms:

d,-"(a°®...®a")—a ® .®ddt'®...®d", 0<i<n
d"d®®...9d") =
S@®..0d)=d®...04d 104" ®...04d%,
t,,(a°®...®a")—a"®a ®a.
The left column of the bicomplex associated to this object in Section 2.7 is
called the Hochschild complex C - (4, 4).

OVERVIEW - 13

Let us denote by L the whole bicomplex, by § its endomorphism shifting
it by two columns to the right, by K the bicomplex consisting of the first
two columns of L and zeroes elsewhere. There is an exact sequence

0-K—->L—L/K—0

and canonical isomorphisms H - (AK) = H - (4, A),S : L ~ L/K. Passing
to homology, we get an exact sequence:

(A, A) — HCy(A) > HCy_5(A) S H,_ (4, 4) —

Here we write HC,(A) instead of HC,(A).
For cyclic cohomology, one can obtain in the same way an exact sequence
involving Hochschild cohomology with coefficients in A*:

.. — H"(4,4*) - HC"'(4) - HC""'(4) — h"*1(4,4") —

2.10. RELATIVE CycLIC HOMOLOGY OF ALGEBRAS. Consider a differ-
ential graded algebra A over a field k of characteristic zero. It is called free
if it is isomorphic to the tensor algebra of a graded vector space (nothing
is assumed about the differential). More generally, a morphism 4 — B is
called free if it is isomorphic to a morphism A — A4 * C, where C is free
and * denotes amalgamation. We also say that B is free over A.

The category of associative k-algebras is embedded in the category of
differential graded algebras with vanishing components of degree zero.

Let f : A — B be a morphism of k-algebras. A resolution of B over A is
a commutative diagram

R
7’ -
4 1"
N
B

such that R is free over A and = is a surjective quasiisomorphism. Every f
admits a resolution.

Consider a resolution R as a complex. From the Leibniz formula, it fol-
lows that [R,R] + i(A) is a subcomplex (here [R,R] is the linear span of
supercommutators). Put

HC,(A — B) = Hy.1 (R/([R,R] + i(A4))).

We then have the following results.

7
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(a) These homology groups do not depend on the choice of a resolution
and define a covariant functor on the category of morphisms of k-algebras.

(b) Composition of morphisms A — B — C generates a functorial exact
sequence

..~ HC,(A - B) - HC,(A—C)
—~HC,(B—~C)—HC,(A—B)— ...

(c) There are functorial isomorphisms HC,(A — 0) =HC, (A).

2.11. CONNECTION WITH THE DE RHAM COHOMOLOGY. Let 4 be a
finitely generated commutative k-algebra, and k a field of characteristic zero.
One can define the algebraic de Rham complex (£24,d ) in the standard way.

When k = C and A4 is the ring of polynomial functions on a nonsingu-
lar affine variety X, one can identify H"(24) with the singular cohomology
H(X,C). In the general case, to calculate H'(X,C),X = Spec(4)(C) al-
gebraically, one must first choose an affine embedding of Spec(A), i.e., a
surjection B — A, where B is a polynomial algebra. Let / be the kernel of

this surjection. Define the following filtration of the complex (2B:
. VB for n < j;

F'(YB = . -
{1"‘1918 forn > j.

Put
H, (4;n) = H (QB/F""'QB).

[
These crystalline cohomology groups do not depend on the choice of B — A.
Grothendieck established an isomorphism
H (X,C) = H (limQB/F"t'QB).

Cyclic homology is related with the finite levels of this filtration via functorial
morphisms,

Xn,i * ch(A) s Hn_Zi(A,n - l)

cris
If I is generated by a regular sequence, we have the isomorphisms
@Xn,i : HC,(A4) — @ HY Y (A;n—1i).

0<2i<n
If Spec(A) is a reduced smooth scheme, we have

n (Am) — H"(QA) = HBR(SPCC(A)) for n < m;
cris \“ %1 - WA/dgzn—-lA for n = m.
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Thus, in this case cyclic homology is

HC,(A) = YA/ 4 ® (@ HRH (Spec(A)) .

i>l

2.12. TRACES AND CYCLIC COCYCLES. Let us now return to the situation
in Section 2.5, where we started with a linear functional [ : Q<9(4) — C,
completing the complex (29,4 ) to a Connes cycle and constructed an op-
erator 7 : A%? — A*. Here §2(A) is the noncommutative de Rham complex.

One can now explain in what sense cyclic cohomology classifies integrals:
the correspondence [ « T is a bijection between closed graded traces and
cyclic cocycles (called characters).

We can now extend some further notions of topology and differential
geometry to the noncommutative case.

2.13. COBORDISM. An (n + 1)-chain in Connes’s sense is a quadruple
(2,09, r, [) consisting of the following data.

(a) Q= @1, ¥, 00 = @], (0Q) are differential graded algebras, and
r: 2 — 0Q is a surjective morphism of degree zero. -
(b) [ : ! — Cis a trace such that fdw =0 if r(w) =0.

Given a chain, its boundary is the n-cycle (09,d, f '), where [ "W = Jdw
if r(w) =w'.

Twao cycles (', 2" are called cobordant if there exists a chain with bound-
ary ¥ @ ), where the bar denotes the orientation reversal.

In the same way, one can define the relative notions of cobordism over an
algebra A.

Cobordism is an equivalence relation.

It can be determined in terms of cyclic and Hochschild cohomology. Let
7', 7" be the characters of cycles (', . Then these cycles are cobordant
iff the difference of their cohomology classes belongs to the image of the
morphism described in Section 2.9.

S:H"A,A") — HC*(A).
2.14. CONNECTIONS. Consider a cycle p : A — Q over A4 and a projec-

tive right A-module E of finite rank. A connection on E is a C-linear map
V:E — E @4 Q' with the following property:

Viea) = (Ve)a +a®d(p(a)) foralle € E,a€ A.

We shall assume that A has an identity and put £ = E ®, (2. We extend
Vto £ by

Vie®dw)=(Ve)w+e®@dw.
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Consider the graded End,(E )-algebra Endg(€). For T € End(£) put

8(T) = VT — (-1)%DTV.

Define a trace functional on Endq(€)” as the composition of the matrix trace

and [ : " = C. .
The triple (Endq(€),6, [ otr) is not, however, a cycle because 6 # 0 in

general. In fact, V2 on £ is the multiplication by a curvature form 6, and

ST =1[0,T). N
In noncommutative geometry, there is a universal method of killing cur-

vatures.
Abstractly, consider a system (Z, 6,6, [) consisting of a graded differential

algebra (Z,6) with the last component =, a closed trace [, and an element
§ € =2 such that 6¢ =0 and 67 = [0,T) forall T € =. '
We adjoin to = an element X of degree 1 subject to the following relations:

X?=0; wXw, =0 foral w; €Z.
On the resulting algebra =’ define d’ and [ " by the following rules:

d'w=6bw+Xw—(-1)% X for wez;
d'X =0,

/
/ (wi +wipX + Xwp + XwpnX) =/w,, - (-l)deg(w”>/wzz9»

where deg(wy) =n = deg(w.z)/ + 1 =deg(wy) +2.

Connes proves that (Z',d’, [*) is a cycle. :

If we now apply this construction to (Endq(£),6,6, [), we get a cycle
over End4(E). Its character depends only on the class of E in Ko(4) and on
the character of the initial cycle. Besides, in the spirit of Morita, the cycli;
cohomology H (A) of A and End,4(E) coincide. N

Connes proves that the resulting map Ko(A4) x H(A4) — H(A) is biadditive
and makes of H(A) a K3(A)-module if A is commutative.

3. Quantum Groups and Yang-Baxter Equations

3.1. AFFINE ALGEBRAIC GROUPS. An affine algebraic group G over a
field k can be defined in the following “naive” way. It is given by an ideal
JC k[z;i], i,j =1,...,n with the following properties.
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(@) Let U = (u{ ),V = (v/) be two n x n-matrices whose coeflicients lie
in a commutative k-algebra 4 and satisfy the algebraic equations f (i) =
f()=0 forall f eI (or for a family of generators of I). Then UV is
also a solution of this system.

(b) The identity matrix 1, = I = (6] ) satisfies J.

(c) If U (as in (a)) satisfies J and is invertible in M (n, 4), then U ! also
satisfies J.

In more invariant terms, G is determined by its functor of points on the
category of commutative k-algebras A,

G(A4) = {f € Hom(k[z]/J,A) | (f(z})) is invertible}.

Of course, the invertibility condition can be built into the definition of the
function ring of G: It suffices to invert formally Z = (z/) first, that is, to
introduce new independent variables (y/) forming an n x n matrix ¥, and to
put

F(G) =klz/,y!]/(J, coefficients of XY —I).
Then
G(4)= Homy a1, (F(G), 4).

The initial ring F(G) = k(z]]/J represents an algebraic matrix semigroup
G. The matrix Z itself, representing the identity morphism of F(G) or F(G),
is called a generic point of G or G. An arbitrary point corresponding to an
injective morphism F(G) — A(resp. F(G) — A) is also called generic.

Looking at conditions (a), (b), and.(c) in terms of generic points, we can
rewrite them in the following way. For U,V take points F(G) —F(G)®
F(G) corresponding to z; — z/ ® 1 and z/ — 1®2], respectively. Then the
product corresponds to the point Z®Z with coefficients (Z®Z)f = 3" 2/ @z
(thus, our tensor product of matrices is not Kronecker’s tensor product!).
In other words, we get the diagonal map (or comultiplication) A : F(G) —
F(G)®F(G),A(Z) = Z ® Z. Similarly, condition (b) furnishes a counit
map € : F(G) — k, and condition (c) furnishes an antipode i : F(G) —
F(G):iZ)=Y=2Z"".

It is well known that if we explicitly add to this data the muitiplication
map m : F(G) ® F(G) — F(G) and the unit map 7 : k — F(G), we shall
obtain a particular case of a general notion of Hopf algebra. Let us recall its
definition.
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3.2. ALGEBRAS, COALGEBRAS, BIALGEBRAS, AND HOPF ALGEBRAS.
(2) An associative k-algebra with unit is a linear space E with the structure
maps m: EQ®E — E and 7 : k — E such that

mo(m®id) =mo (id@m): EQEQE — E;
mo(n®id) =mo(id®n) =id :kQE=E®k=E - E.

(¥ coassociative k-algebra with counit is a linear space E with structure
maps A:E - EQ®E and € : E — k such that

([d®A)oA=(A®id)oA:E - EQEQE;
(e®id)oA = (id®e)oA=id:E - E =kQE =E ®k.

(c) A bialgebra is a linear space E endowed with the structures of an
algebra (m,¢) and a coalgebra (A, n) satisfying a compatibility axiom that
can be written in the form: A is @ morphism of k-algebras.

It is assumed here that the multiplication in E ® E is given by the usual
rile (e® f)(¢ ® f') =ee' ® F .

This is the main place where the definition of, say, superbialgebra differs
from that of bialgebra: A sign enters in the formula for multiplication in
E ® E. For this reason, it is better to write the compatibility axiom in the
form

(m®m)oS(23)o(A®A)=Aom:E®E —EQE,

where S(3) : E®* — E®* is the morphism interchanging two middle factors.
It may become nontrivial in a tensor category different from that of vector
spaces, e.g., that of Z,-graded vector spaces. If we carefully write all the
relevant axioms with the necessary permutation morphisms, they will be
automatically applicable in more general tensor categories (cf. Section 3.3).

We see also that the bialgebra data and axioms are self-dual with respect
to the reversal of ail arrows and the replacement of {m,7) by (A,¢), and
vice versa.

(d) A Hopf algebra is a bialgebra (E,m,n, A, ¢) endowed with a linear
map i : E — E (antipode) such that

mo(i®id)oA=mo(id®i)oA=noe:E—E.

The properties of an antipode in a general Hopf algebra can differ con-
siderably from those in an affine algebraic group.

First, it is in general not a morphism of algebras or coalgebras; it re-
verses both multiplication and comultiplication. Precisely, put m*® = mo
Su2), A® = 83y o A. Reversing in a bialgebra either multiplication,
comultiplication, or both, we still get a bialgebra. An antipode i, if it exists
at all, is a bialgebra morphism (E,m,n,A,e) — (E,m*®,n, A% ¢). If, in
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addition, it is bijective (which is not always so), then i ! is an antipode for
(E,m*,A) and (E,m, A%), hence i is one for (E,m%, A%).

E is commutative if m = m°®; cocommutative if A = A,

If an antipode for a bialgebra exists, it is unique (cf. [A] and Chapter 4),
but not necessarily bijective. If it is bijective, it may have arbitrary finite or
infinite order.

One can now easily prove that an affine algebraic group is (the spectrum of)
a finitely generated (as algebra) commutative Hopf algebra, and vice versa.
The group itself is commutative iff this Hopf algebra is cocommutative.

Now a tentative definition of an affine group in noncommutative geome-
try, or quantum group, is obvious: It should be a Hopf algebra, in general
noncommutative and noncocommutative, with some finiteness conditions and
possibly a condition of bijectivity of the antipode.

One remark is in order now. We have seen that the reversal of arrows trans-
forms a bialgebra into a bialgebra and an antipode into an antipode. This
formal duality can be transformed into a linear duality functor (E,m, A) —
(E',A’,m’), where E’ consists of linear functionals on E vanishing on an
ideal of finite codimension. For an affine algebraic group, (F(G))’ consists
of distributions with finite support. In characteristic zero, the distributions
supported by identity form the universal enveloping algebra of the corre-
sponding Lie algebra. In general, speaking of a quantum group, we must
specify how we imagine a given Hopf algebra: as its function algebra or its
distribution algebra. We shall usually prefer the first choice and state our
definitions correspondingly. In particular, speaking of representations, we
shall deal with comodules rather than modules (cf. below).

3.3. AFFINE QUANTUM GROUPS IN NONCOMMUTATIVE GEOMETRY. We
shall often construct our groups by direct generalization of the data in Sec-
tion 3.1, therefore we shall start by rephrasing them in the noncommutative
situation. Consider a bilateral ideal J C k(z/),i,j = 1,...,n, where k(z])
is the free associative algebra. We shall say that J defines a quantum ma-
trix semigroup G, with the function ring F(G) = k(z/)/J, if the following
analogs of the conditions 3.1(a) and (b) are valid:

(a") Let U = (u}),V = (v/) be two n x n matrices whose coefficients lie
in an associative k-algebra A, satisfy the noncommutative polynomial equa-
tions f (u/) = f(v/) =0 for all f € J and furthermore pairwise commute:
[l ,v}] = 0. Then UV also verifies f ((UV)]) =0.

Note the commutation condition: Two points of a quantum (semi)-group
can be multiplied only if their coefficients are “simultaneously pairwise ob-
servable.” In particular, one cannot define a “one-parametric subgroup”: one
cannot even hope that U? or U~! are points of the same group!

/
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(b’) The identity matrix I, = I satisfies J.

Of course, this is equivalent to the statement that (F (G), A, €) is a bialge-
bra, where A(Z) =Z ®Z,e(Z) =1 (A and ¢ are applied coefficientwise).

For the reasons that should be already clear, we must replace 3.1(c) by a
more complicated condition if we want to go from a semigroup to a group.

If (E,m, A) already admits an antipode, it represents a quantum group.
Otherwise, one can argue as follows.

In the category of morphisms of bialgebras F (G) — H, where H is a Hopf
algebra, there is a universal morphism. The corresponding Hopf algebra rep-
resents a quantum group G, and A-points of this group is Homy_,¢(H, A).

We shall prove this in Chapter 4; to construct 4 from F (G), it is necessary
formally to invert Z, (Z~'), (((Z~'))~1),..., etc., to infinity.

Therefore, an analog of Section 3.1(c). must ask for invertibility of an
infinite set of matrices, and also for the validity of a set of noncommutative
polynomial equations for their elements.

Since in our presentation a special role is played by a matrix Z, it is
appropriate to clarify its place in the theory. For an affine algebraic group,
the choice of Z is equivalent to that of a faithful representation of G in the
coordinated vector space k”. The same is true in general if one replaces
representations by comodules.

3.4. CATEGORY OF COMODULES. A left (resp. right) comodule M can
be defined over any coaigebra (E, A, ). The data and the axioms can be ob-
tained by reversing arrows from those of a module: M is a k-space endowed
with comultiplication 6 : M — E @ M (resp. M — M ® E) such that

(A®id)ob=(ld®8)oé: M - EQEQM (coassociativity);
(e®id)ob=id: M -k®M =M (counit),

and similarly for the right coaction.

A morphism of left comodules is a linear map r : M — N such that
(id ®r) 0 6y = by or. Right comodules are defined in a similar manner. The
. direct sum is defined in a straightforward way. Left and right are exchanged
by going to A%: If (M, §) is a left (right) (E, A)-module, (M, §% = S(15)06)
is a right (left) (E,A%)-module. This is an isomorphism of categories.
Checking this involves only axioms of the basic tensor category, hence is
valid also for supercoalgebras, etc.

In order to define the rensor product of two left (resp. right) comodules,
we need multiplication. If (E,m,A) is a bialgebra, and M, N are two left
comodules, we define the coaction map

6M®N2M®N —-EQMQN

v i
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as the composition

MON*YEQMQE®QN

Si23) m@id @ id

— EQEQMQ®N EQMQN.

Again, this is well defined in view of the general tensor category axioms.

Finally, if M is a left (E, A)-comodule, the dual space M* has a nat-
ural structure of the right comodule, which can be transformed into a left
(E, A°)-comodule. If (E,A%) is (a part of) a Hopf algebra, we can use
the antipode i : (E, A®) — (E, A) to induce on M* the structure of (E, A)
comodule.

Thus, in the category of, say, left comodules over a Hopf algebra, one
can define the data of a tensor category, but in general, they will not satisfy
the usual axioms, e.g., commutativity of the tensor product. We shall see
it in down-to-earth terms after discussing the connection with multiplicative
matrices.

Let (E, A, ¢) be a coalgebra. A matrix Y € M (n, E) is called multiplica-
tive, if

@AY)=Y®Y.

®) e(Y) =1,

Let (k",6) be a left E-comodule. Define ¥ = (y{) EM(n,E) by 6(e;) =
>"; ¥l ®e;, where {e;} is the standard basis of k".

3.5. PROPOSITION. (a) The construction described above establishes a
bijection between n xn-multiplicative matrices and structures of left comodule
on k".

®) Let r : (k™,61) — (k",8,) be a morphism of E-comodules, given by
a matrix R = (rl) : r(e;) = Zr’ ®é¢}. Then Y\R = RY,, where Y; are the
multiplicative matrices defining the comodules. Any R € M(m x n,k) with
this property represents such a morphism.

{c) The direct sum of comodules represented by Y,,Y, is represented by
(55):

(d) The tensor product of comodules represented by Y,,Y is represented
by the Kronecker product ¥, ® Y»;

(Y1 oK) = (MK,

{e) Y is mulriplicative for (E, A, e) & Y* is multiplicative for (E, A%, ¢).

All these statements directly follow from the definitions. Note only that
statement (d) changes in the category of superspaces: Some signs must enter
in the definition of the Kronecker product (see Chapter 4).

/
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One can say that multiplicative matric.es form a_categgrg iqilu;valg\)t to that
of finite-dimensional left comodules, w.mth morphxsnTls* e1 n2 . g'e th;ee "

Consider now the following situation. Lef M,~_,z = ;lis.m e e
comodules over a bialgebra. Then the canomcal.lsomorp T optim of
spaces (M, @ M) @ My — M ® (M, ® M3) is also an

s . er. the
comodules. This follows from the coassociativity axiom of A. However,

i i i hism

ical i i M, in general is not an isomorp
al isomorphism M; M, — M, ®M, )
f):"n::rl;odules. g fact, it may well happen that these comodules are nol

. ] . u F ] « . l
lsou]orp 1C at . or exalnp €, one dlmeﬂSIOl\al cox“()du €S co‘!espond to

tive
multiplicative (or grouplike) elements that may wel_l form a l;l(;{lcomr(r;zta ivi
oup as in the Hopf algebra of functions on a finite nop—a elian gr ! a;l).iso-
gr Su‘;pose however, that for a comodule M, tzhere ;,!xxsts a qor:;x:nmamx
(or j : i < M®2 - M®2 If M is given
ism (or just a morphism) r : M®* — ! :
;l oargglsrmis( giJven by R, we get from 3.5(b) and (d) a quadratic relation

between the coefficients of Z,

(3.1) RZGZ=ZOZR.

3.6. YANG-BAXTER EQUATIONS AND BRAID GROUPS. The stsz:;:::i(:) :.ng
. hism S(1,, : M ®M — M ®M can be used to define a repres o

the 5 e oup S, on M ®": One decomposes a permutation into a pro
o Syfmmemgsgi:ionl; a';\d then takes the product of the corresponding llflgar
2;2::&3?5}13}“3 result does not depend on the choice of the decomposition

because the Coxeter relations
S2)S@23)S12) = S(23)512)S23)
5(212) T i bitrary linear oper-
form a presentation of S3. The similar relat_lons for an arbitrary
ator R € End(M ® M) (where R;; = R ®id, etc.)

3 ®3
(3.2) RuRuRi» = RuRi2Rps : M® M

are called the (quantum) Yang-Baxter equation. An.inverfible soluggn :,):
this equation allows us to define an action of the Artin braid group Bd,

M®", If in addition
(33) RL=id

ition”), thi i that of S,.
“unitarity condition”), this action reduces to :
( uIr.lmll)m}l;t::ddeev and his collaborators use the relations (3.2) and (3.1)as a

basic definition for the class of quantum groups they consicifnz'11 (se:riReTF]).
Starting from a Yang-Baxter operator R, they construct a bialge

E = k(Z)/(coefficients of RZ ©Z —Z OZR).
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(The last stage, transition from E to its Hopf envelope, is discussed in
[ReTF] in a less general setting, where the noncommutative localization can
be replaced by a commutative one.) :

It is worth mentioning that the coefficients of RZ OZ —~Z OZR generate a
coideal with respect to A(Z) =Z ®Z for any R, so that in the construction
of E, the Yang-Baxter property plays no role at all.

3.7. SOME VARIATIONS.  Since the Yang-Baxter operators play the role of
the structure constants of quantum (semi)groups with nice tensorial properties
of the representation category, it is natural to discuss here various approaches
to their classification.

We shall briefly comment upon some directions of recent research.

3.7.a. Classical Yang-Baxter Equations. Consider a Yang-Baxter op-
erator R close to Sy, say, R = St2) + hSqayr + 0(h?), where 4 is a
small parameter. By inserting this into Eq. (3.2) and considering the equa-
tion modulo 4°, we get the following classical YB-equations SJor a linear
operator r € End(E ® E) = End(E)®?: -

Gd  rgris] + 2, ras] + [ris, ) = 0.

Here, say, rj; = r ® id, and the commutator of riz and ry3 refers to their
common first factor in End(E)®3.

V. G. Drinfeld considered Eq. (3.4) as an abstract equation in a Lie
algebra g, related it to various beautiful structures in the classical Lie group
theory (Poisson-Lie groups; isotropic triples), and discussed the quantization
of a classical solution, i.e., its extension modulo growing powers of h (see
[Drl1] and references therein).

3.7.b. Yang-Baxter Equations with Parameters. The initial discovery of
Yang-Baxter operators was connected with one-dimensional quantum me-
chanics and led to a slightly different algebraic structure. Imagine a system of
vector spaces V' (1) depending on a parameter 1, e. g., fibers of a vector bun-
dle over a space T. Suppose that an operator R(ty,0) € GL(V (1) ® V (1))
is given for generic points #;,¢, in such a way that

(R(Il,tz) ®id)(id ®R(t17t3))(R(12,t3) ®id)
= (A ®R(t2,15))(R(11,13) ® id)(id ®R (1, 1,)).

This means that the two ways to rearrange V(1) ® V (t,) ® V (t3) in reverse
order with the help of R coincide. Physically, R may correspond to the
scattering operator of two particles moving with momenta ¢, 5; V(t) is an
inner state space; momenta are conserved after the scattering.

/
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One usually identifies all ¥ (¢) (for example, by trivializing the vector
bundle). A new feature of the situation is that one can now consider, for
example, a meromorphic dependence of R on #1,%; an important class of
constructions leads to solutions with a pole at 7; = ¢, so that one cannot rear-
range fibers at the same point but only at different ones. Belavin and Drinfeld
gave a classification of an important class of such solutions parametrized by
an algebraic curve and having a pole of the first order on the diagonal.

They lead to bialgebras generated by families of multiplicative matrices
Z(t), with the commutation relations

R(t1,0)Z(1) OZ(R) =Z(h) OZ(n)R(1:1),

which play an important role in two-dimensional physics.

3.7.c. Yang-Baxter Categories. A natural generalization of a Yang-
Baxter operator and simultaneously a version of Yang-Baxter equations with
parameters is given by the notion of a category with tensor product on tensor
powers of objects on which a functorial action of braid groups is defined.
We shall discuss this in some detail in the next section.

3.8. AN EXAMPLE: QUANTUM GL(2). As in the classical context, quan-
tum GL(2) is a basic example and a germ of practically all aspects of the
general theory.

- 3.8.a. Bialgebra M,(2). By definition, it is generated as an algebra by
the coefficients of a matrix Z = (: Z) subject to the commutation relations
ab=q 'ba; ac =q 'ca; bd = q~'db; cd =q7'dc;

(3.5 —1
bc =cb; ad —da=(q”" —q)bc..

Here q € k* is an arbitrary parameter.

This algebra has a bialgebra structure uniquely defined by the condition
that Z is multiplicative. A direct proof is possible but cumbersome. For a
conceptual proof of this and other properties, see [Ma2,4], and Section 4.2

Note that (M, (2),m°® A%) is isomorphic to M, (2).
3.8.b. Quantum Determinant. Put
(3.6) D =DET,(Z)=ad —q 'bc =da —qcb.

This is a multiplicative element: A(D) = D ® D,&{D) = 1. It commutes
with a,b, ¢,d. Moreover, if g is not a root of unity, D generates the center

of M,(2).
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3.8.c. Adjugate Matrix. We have
3.7) d_ 1 gb a b _fa b d qb _{D 0
—-q7'c a c d c dJ\~¢g7¢c a O D

.3.8.d. Hopf Algebra GL,(2). By definition, it is M, (2)[D~'] endowed
with the obvious diagonal map and the antipodal map derived from Eq. (3.7):

i(a) =D7'd; i(b)=—qD7'b;

i(c)=—-¢7'D7'¢; i(d)=D"a.
Notice lthat tl"xe coefficients of Z~! = {(Z) satisfy the commutation relations
of M '(2), i.e., of the opposite bialgebra, as it should be, by general prin-

ciples. A somewhat mysterious property of GL,(2) is the following gener-
alization.

3.8.e. “One-Parametric Subgroup” Passing via Z. The coefficients of Z"
satisfy Eq. (3.5) ¢ for all integer n.!

In particular, if g is a root of unity, M,(2) and GL,(2) contain a farge
commutative subring generated by the coefficients of Z". In fact, they are
even finitely generated as modules over their centers.

3.8.f. Comodules. Put SL,(2) = GL,(2)/(D —1). This is a Hopf alge-
bra. Its category of, say, left comodules is semisimple precisely when g is
not a root of unity. Simple comodules are classified by highest weights, as
in the classical theory.

3.8.g. The Yang-Baxter Operator. Relations (3.5), can be written in the
form RZ ©Z =Z ©ZR, where R is the Yang-Baxter operator

q! 0 0 0

0 1 0 0
R =

0 gtl'-g 1 0

0 0 0 g

In fact, they were first discovered in this way. In Chapter 4, we reproduce
another interpretation given in [Ma2]).

We finish here our brief introduction to quantum groups based upon the
;deas that originated in the work of the Leningrad school, Drinfeld, and
imbo.

!This was remarked by Yu. Kobyzev in 1986 after my talk at a seminar (unpublished), and
rediscovered recently by E. Corrigan, D. B. Fairlie, P. Fletcher, R. Sasaki (Preprint DTP-89-
29, University of Durham, July 1989) and S. Vokos, B. Zumino, J. Wess (Preprint LAPP-TH-
253/89, June 1989).
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