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PREFACE

The purpose of this book is to organize, augment when necessary, and
record the major conceptual advances in an aspect of automated theorem
proving that peaked during the decade of the 1960’s. There were several
reasons for this decade of intense activity: the general excitement of the
subject matter, the discovery of a particularly attractive computer-oriented
inferecne principle called the resolution principle, and the experimentation
with automated theorem provers as providers of “intelligent” behavior
within first-generation question-answering systems, robots and automated
computer program-writing systems. The field itself is just two decades old,
having been born in the mid-1950’s with the arrival of digital computers
on university campuses where the academicians could play with them. We
include material spanning the full two decades; however, the center of
gravity is the work done in the mid-to-late 1960’s.

Admittedly, the thrust of investigation was one-sided. From a fixed
format for the presentation of the problem (a particular normal form within
the language of first-order logic), a variety of computer-oriented inference
structures were developed. The goal was finding “natural” and “efficient”
deduction schemes still general enough to handle any valid formula of
first-order logic when in the proper format. Almost totally neglected was
the problem of successful selection of a few promising deductions from among
the many possibilities generated at each stage of execution. In part this
was due to the difficulty of solving this selection problem. This is a prime
research area for the 1970’s and beyond, undoubtedly to be recorded by
numerous books in the future.

It is the author’s contention that the efforts expended on the computer-
oriented inference systems to date provide a flexible basis upon which the
future theorem provers will be built, using search control structures and
other devices just beginning to be understood. Thus this book is written,
not simply to report historically on an exciting intellectual excursion, but
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also to propogate the acquired knowledge that may well form the logical
bases of automated theorem provers to come.

The reader will readily note the author’s bias towards a rigorous develop-
ment of the material presented. This is characterized both by the full proofs
of almost all stated theorems, and the attention to the analysis of the scope
of the formats or procedures presented. However, it is clear that many read-
ers are likely to be computer systems builders rather than mathematicians.
These readers are expected to skip over many proofs, but are encouraged
to read all theorem statements. Extensive discussions and the many exam-
ples are especially intended for the less mathematically-inclined reader.

Although this book is not a textbook in format it can be used in instruc-
tor-student settings quite easily. Some exercises of varied difficulty are
incorporated in the text and the instructor will find it easy to compose routine
exercises to test the understanding of a new format or procedure.

Anyone who has seen an axiom system in first-order logic, who knows
the meaning of a valid formula and also has understood some proof by
induction is adequately prepared to read this book. Part of Chapter 1 is
devoted to the review of the basic concepts and notation from modern logic
used in this book.

Chapter 1 includes the review just mentioned, a discussion of sample
problem domains and the formulation of possible theorems, and the manner
of translation of formulas to the standardized form we use. Section 1.1
gives a general orientation to the field and the book.

Readers who read the end of detective stories before the middle and
artificial intelligence buffs are encouraged to read Section 6.1 before pro-
ceeding to Chapter 2. Here the traditional problem reduction method is
examined, shown lacking as a full proof search structure, and the nature
of the corrections given. This intuitive system is very different in appear-
ance from the resolution procedures that are our main focus of attention.
That a variant of resolution developed in earlier chapters can be used to
indicate and confirm an appropriate extension to the problem reduction
format, done in Section 6.2, is a demonstration of the robustness of the
basic concepts behind the resolution variations. This reinforces our belief
that the ideas, or the formats themselves, will be the basis of future theorem
provers of general capability.

Chapter 2 introduces the basic resolution inference scheme, the primary
inference structure that we study. Chapter 3 organizes and studies the im-
portant variants of resolution. These have been organized to unify concepts
as much as possible; for example, clause-ordering rules are handled in a
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uniform manner throughout. Also, the concepts of ordered clauses, settings
or linearity are seen to underlie most known variants.

Chapter 4 contains a study of subsumption as it applies to the important
variants of resolution. Much of this is new to the literature. Chapter 5
concerns the introduction of equality as a built-in relation. Some of this
material is also new to the literature; in particular, the addition of equality
to the model elimination procedure. In Chapter 6 the model elimination
format is seen to relate to the problem reduction format.

Our stylistic conventions are generally familiar. We use “iff”’ for “1f and
only if”’. The symbol JJ designates the end of proofs. Our definitions are
introduced in either of two formats: embedded within the text itself or dis-
played. This is not meant to indicate relative importance, but more often
reflects the complexity of the definition or the desire to break up a span of
uninterrupted text.

We have made no attempt to present a full bibliography of the field.
Instead, we list entries of direct relevance to the topics we consider in this
book and include a reference to the most comprehensive bibliography on
automated theorem proving known to this author, prepared in 1971 at
the University of Maryland.
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CHAPTER 1

THE ROLE OF LOGICAL SYSTEMS

1.1. Orientation

The dream of a mechanical marvel that reasons on the level of human
thought is a dream as old as the concept of machine. Not surprisingly,
therefore, computer programs that prove theorems appeared as soon as
electronic computers passed the prototype stage, in the early 1950’s.

The interest in automated theorem proving stems from the ability to
cast many of the tasks associated with human intellect as applications of
theorem proving. An environment, be it a mathematical theory, a data
bank of census data, or a physical environment for a robot, can be presented
as axioms with the task goal as the asserted goal. (We discuss examples of this
in this chapter.) The realization that powerful theorem proving techniques
could provide a key component of many “intellingent machines” has drawn
many computer scientists and mathematicians to the computer rooms to
implement a theorem prover.

The first significant computer program for theorem proving was the
Logic Theory Machine of Newell, Shaw, and Simon [NS1], which appeared
in the mid-1950’s. The problem domain under study was a particular
formalism for the propositional calculus. They were interested in human
problem solving techniques, and so devised a proof search organization
distinct from the natural proof enumeration and from standard decision
methods such as truth tables. One of the several important techniques that
they introduced to the field of automated theorem proving was the technique
of “working backwards from problem goal to subproblem, a process we
amplify shortly. The performance level was quite favorable relative to
humans undertaking the same task, but only over a very modest portion
of the domain of propositional calculus problems. The problem of mecha-
nizing theorem proving was roundly attacked but certainly not demolished.

The Geometry Theorem Machine of Gelernter et al. [Gel], [GH1], which
followed in the late 1950’s, was similar to the Logic Theory Machine in
proof search organization but novel in its use of problem heuristics. A
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heuristic is a rule-of-thumb, sometimes very useful but not always applicable.
The theorem prover could prove a substantial class of the theorems con-
sidered in a high school plane geometry course. It employed the “diagram”
that traditionally is offered with the problem statement at the high school
level to narrow the alternatives in the proof search. The proof search
worked backward from the goal, using a search form now often called the
problem reduction format. This format is of interest to us in this book and
is the subject of Chapter 6. We outline it here.

Given a statement of the problem, i.e. premises and a conclusion
believed to follow logically from the premises, we seek theorems in our
collection of established theorems with conclusions that match the problem
conclusion. It suffices to satisfy the hypothesis of any such known theorem
to establish the conclusion of the problem, because the truth of both the
known theorem and its hypotheses establishes the truth of the theorem con-
clusion, which is also the problem conclusion. The hypotheses of the known
theorem can be taken as new problem conclusions to be solved because their
confirmation is seen to yield directly the intended conclusion. This inspires
the name ‘“problem reduction” since the problem goal (conclusion) is
“reduced” to other goals, hopefully easier to establish. A reduction to a
premise allows successful termination of that particular sequence of
reductions.

The problem reduction method outlined above is one method of proof
search organization. A proof search organization permits a framework in
which the problem can be stated and a process executed that may lead to
a signal (and “proof”) that the conclusion follows from the premises.
If success is never indicated unless the conclusion logically follows from
the premises and rules of inference (here the established theorems), then
the search organization system is said to be sound. If the search organization
permits a theorem to be established whenever the conclusion logically follows
from the premises and the asserted rules then the proof search organization
system is called complete. We see in Chapter 6 that the above described
problem reduction system is sound but not complete. (Admittedly, the
terms have not been precisely defined here; they will be made precise later.)

Proof search organization is but one component of the design of a
sophisticated automated theorem prover. A mechanism that will determine
the direction of search development is also needed. We picture this in terms
of the problem reduction method outlined above. A goal is matched with
the conclusion of perhaps a large number of theorems initially, to generate
all possible ways the goal could be achieved. This often generates a large
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number of alternate subproblems of which only one (perhaps compound)
sﬁbproblem need be established. Certain information may allow deletion
of some of the alternatives. Indeed, the diagram served this purpose elegantly
in the Geometry Theorem Machine by allowing deletion of any subproblem
with a statement not true in the diagram. Other trimming rules also exist
that depend on the previously generated subproblems, as we see later.
These rules usually leave a sizable set of alternatives from which to select
the more promising ones if further pursuit is necessary. The problem of
determining an order of investigation by assignment of a priority order
to alternate subproblems we call the search control or search guidance
problem. The Geometry Theory Machine first used selection of subproblems
by order of generation for those subproblems not removed by the diagram
or other tests. A selection rule was introduced later based on the number
of line segments implicitly and explicitly named in both the subproblem
and the premises. This often realized a substantial speed-up in the proof
search.

The conceptual distinction between search organization and search
control should be emphasized, along with the realization that the boundary
is fuzzy. Search organization has as its essence the proof search representa-
tion and record, largely a function of the chosen language and inference
rules, of which many forms are possible. Search control or guidance is
a selection process that converts an inherently nondeterministic process
to a deterministic (sequential) process. (A small amount of parallelism does
not essentially alter this characterization.)

We illustrate the separate roles of search organization and search control
in terms of human problem solving. To establish that one can travel from
Durham, North Carolina (U.S.A.) to Dunkirk, Nord (France), a simple
depth-first “forward chaining” search organization is very appropriate.
That is, at each stage we select a city, and then check that travel links exist
between the previously selected city (which initially is Durham) and the
newly selected city. This is iterated until the selected city is Dunkirk or
travel links between ‘““adjacent” cities cannot be established. In the latter
case, an alternate selection is made and the process continues as described.
This describes the mechanism of search organization. Search control, or
guidance, involves the selection of the city from a set of alternatives, some
subset of the cities of the world. A powerful heuristic is to insist that the
selected city always be closer to Durham than Dunkirk is, unless that set
of cities is exhausted. Other information, such as whether or not a city is
an international port, is also useful selection information. From experience
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in assembling travel routes, we know that the heuristics above often yield
first-try success. Without such successful control superimposed on the
chosen search organization, the depth-first organization might not be very
“appropriate” at all. Indeed, for difficult mathematical theorems where
heuristic guidance is weak, an organization directed towards parallel
probing is more in order.

Trimming, or deletion, rules are properly part of the search control
component since they aid in subproblem selection. However, to the extent
that the subproblems deleted are logically redundant with respect to
remaining subproblems, such rules are also part of the representation or
search organization component. We need not remove such fuzziness, but
rather accept such ambiguities.

In general, present automated theorem provers have weak search guidance.
The design of strong guidance systems is very difficult, indeed beyond our
present capabilities except for very small, highly structured domains. The
apparent difficulty is that there is no alternative to the use of a large number
of heuristics for search guidance, many of these heuristics of a quite specia-
lized nature. Human problem-solving has this character. Such a structure is
very hard to synthesize, however. The best work in this domain to date
falls outside the formal theorem proving area, in the domain of checker
and chess playing programs. Theorem proving researchers presently are
addressing this component more seriously than they have in the past, but
success undoubtedly will come slowly and in little pieces.

Two efforts in the 1960’s deserve mention because they confronted the
search control problem, in different ways. Norton [Nol] devised a theorem
prover for the theory of groups, which used primarily the problem reduction
organization and included a fair number of heuristics for search control.
Guard et al. [GO1] developed a theorem prover where crucial search control
was supplied by humans. Far from ‘“cheating”, this may be the manner
in which search control is best realized, at least in the near future.*

In contrast with the difficulty in developing an understanding of the
search guidance problem, our understanding of the proof search organiza-
tion component has progressed quite well. It is this component that this
book emphasizes. It is now appropriate to return to our mini-history of
automated theorem proving.

* An open mathematical problem was solved using a result disconvered by their com-
puter program. The program was in the theorem generation mode; it took a human to
appreciate the value of one printed theorem among a collection of less valuable theorems.
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In the late 1950’s several logicians independently became interested in
the challenge and potential of automated theorem proving. Gilmore [Gil],
Wang [Wal], [Wa2], [Wa3], Davis and Putnam [DPI1], Davis et al. [DL1],
Dunham and North [DN1], and Prawitz [Prl] represent some of the better
known work of this period. These investigations were largely motivated
by the conviction that classical mathematical logic was a good springboard
from which to leap into this new research domain. First-order logics provide
a universal language and semantics for everyday discourse and most of
mathematics. Using these given qualities and appropriately designing the
inference machinery, these logicians felt that progress beyond that directly
implied by the Logic Theory Machine could be made by the proper search
organization alone. Strong search guidance was postponed as a problem
(although see Wang [Wa2]); a better search organization via tailored
inference machinery was the first step. The argument for use of the universal
language and semantics of first-order logics is that we should learn our
capabilities in universal systems before moving to restricted systems. First-
order logics provide the best understood ‘universal’’ deductive systems.

Valuable contributions appeared in this period. The use of Herbrand’s
results allowed translation of a first-order logic task to a propositional logic
task (in a perhaps infinitary logic), which meant that quantifiers were
explicitly handled only initially. An apparently efficient and reasonably
natural process for checking tautologyhood appeared in the Davis—Putnam
procedure. We consider this process in Chapter 2. Prawitz introduced to
this discipline the notion of term matching, which in refinement plays
a central role in the efforts on which we will focus.

Computer implementations showed improvement over what had been
previously possible but success was largely confined to problems found in
logic books rather than mathematics books. Investigation continued.

The design of inference systems for automated theorem proving received
a big boost in 1965 with the publication of J. A. Robinson’s paper on the
resolution inference system [Rol]. This provided a single inference rule and
no requirement for logical axioms. Of course, axioms associated with the
specific problem (proper axioms) are needed. The inference rule is extremely
simple propositionally (the “cut” rule in essence) with an encompassing
substitution mechanism attached. Its simplicity makes it often the easiest
way to hand check a simple formula for validity (or refutability as it is
actually formatted).

Although elegant, the basic resolution procedure usually produces
intermediate clauses, in effect ‘“subproblems”, at an overwhelming rate.
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Other investigators sought restricted forms of resolution that would also
permit eventual detection of any valid formula (the completeness property)
yet be more restrictive and, hopefully, more efficient in representation.
It is primarily the basic resolution procedure and some important variants
of resolution that we consider in this book.

The variety of resolution refinements is amazing, and a tribute to the
richness of the basic procedure. We make no claims to present all known
resolution refinements; indeed, new forms are still being discovered. The
refinements known in the early 1970’s that the author believes are con-
ceptually interesting in format are included, and organized to emphasize key
characteristics. The characteristics are important both as unifying concepts
and as possible tools for search control mechanisms.

Because the equality relation is so significant a part of mathematics,
resolution procedures have been extended to incorporate equality as part
of the inference. We consider such extensions. We do not include more recent
work that also incorporates other relations, such as partial ordering. (The
interested reader may consult Slagle and Norton [SN1].)

It is our convinction that the importance of the resolution variants is
in the flexibility of representational formats offered which in some form
or forms may provide the appropriate search organization for future
theorem provers. We do not believe that the precise formats treated here
necessarily are the forms eventually to be used, but believe that many of
the concepts considered here — unification, unit preference, clause ordering
including specified settings (interpretations), linearity — will appear in the
ultimate proof search organizations. For this reason we have chosen to
omit results of implementations, not because they are not important (indeed,
they are the ultimate evaluators) but because they are by nature dated.
Addition of one search control mechanism of value will significantly alter
performance in its domain of application. Likewise, we do not dwell on
the method of application of theorem provers to question-answerers or
other practical mechanisms, although limited discussion is included. We do
present a conceptual application: to illustrate how a variant of resolution
can provide insight into an apparently unrelated search organization system,
we relate a resolution variant to the problem reduction method outlined
earlier. This is a particularly significant illustration because some investi-
gators who have “rejected” the resolution format imbed the problem
reduction format within their devised inference system.

Because we deal with the search organization component, the soundness
and completeness of the procedures studied is important. Soundness will
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usually come easily. As we constrain the inference capability, it is the
completeness that is endangered and that requires effort to verify.

Consideration of the value of completeness is appropriate since a fair
portion of the book is concerned with this matter. First, everyone recognizes
that a complete theorem proving system is meaningless because every proof
search stops when time or space (or the machine) is exhausted. Moreover,
no matter how much compression of time and memory space a super
technology achieves, we know that we face basic limitations on the capa-
bilities of complete procedures. For example, although procedures exist to
determine the truth value of any arithmetic statement invoking only the
addition and subtraction functions, any such procedure must be over-
whelmed when given certain relatively short statements; see Rabin [Ral].

Given this reality, many people have recently pointed out that we should
not focus on complete systems, but should design systems tuned to perform
well in small problem domains at first, and then expand the domains as we
master further techniques. We can have incomplete, complete and
redundantly complete systems, depending on what experimentation deter-
mines is best.

It is indeed appropriate to narrow our sights to specific problem domains
and to shift our primary attention to the search control problem. It is also
appropriate to use highly redundant yet incomplete inference systems when
such systems are effective. But we should note that such statements consider
the overall structure of complex systems. One should not assume that each
component of the system uniformly adopts the characteristics of the overall
system. We consider briefly the likely structure of the future automated
theorem provers we seek.

Theorem provers will undoubtedly have a hierarchy of processes defining
the search control and the search organization structure. For the search
control, the lowest layer is composed of evaluation functions on sub-
problems, comparing the statement against established heuristic values,
such as name comparisons against established facts or premises. Higher
level heuristics measure the function values in the context of a plan, and
a yet higher level structure continually reassesses the current search plan
in the light of new discoveries via generated results or after assessing overly
lengthy probes. We note that each level builds on the levels beneath it.

The proof search organization component, consisting of the inference
system and the search representation framework, also can be layered.
In particular, the inference system may be partly in the search representa-
tion framework, and partly in a data base of inference rules. (This interplay



