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Preface

Neural information processing has been emerging as a new field. This type of
processing is an alternative form of computation that attempts to mimic the
functionality of the biological human brain in solving demanding pattern
recognition problems. However, researchers and engineers have long been
fascinated by how efficient and how fast artificial neural networks (ANNs)
are capable of performing such complex tasks as recognition. Such networks
are capable of recognizing input data from any of the five senses with the
necessary accuracy and speed to allow living creatures to survive. Machines
which perform such complex tasks as recognition, with similar accuracy and
speed, were difficult to be implemented until the technological advances of
integrated circuits and VLSI systems. Since then, VLSI neural systems have
witnessed an exponential growth and a new engineering discipline was born.

There were a number of excellent text and reference books on the subject,
each dealing with one or two topics. This book attempts to present a parallel
VLSI neural system design methodology for pattern recognition applications.
The methodology emphasizes a coordination between model definition,
architectural description, and hardware implementation. Depending on the
different pattern recognition applications, the methodology provides
appropriate ANN models suited to parallel/pipeline processing, mapping the
models onto the corresponding VLSI architectures and finally hardware
implementation.

A parallel ANN model is a basis of VLSI design because it directly reflects
highly parallel, regular and modular VLSI architectures. Such three kinds of
parallel ANN models, including an unsupervised learning model for fuzzy
clustering, a supervised training model for pattern classification, and a
neural-like network model for finite ring computing, are developed in
Chapters 2, 3, and 4, respectively.

VLSI technology offers a highly advanced implementation medium both at
the fabrication and the CAD level if efficient architectures can be provided.
In Chapter 5, the mapping policies from ANNs to systolic arrays are given.
Three typical VLSI architectures based on the effective matching policies are
introduced in Chapters 6-8. They are a parallel architecture built by systolic
arrays, a pipeline architecture based on window operation, and a simplified
architecture using a priori knowledge.
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The implementation of ANN architectures into silicon as special-purpose
hardware is an important step in parallel VLSI neural system design. In
Chapter 9, a computational block design for digital ANN based on dynamic
pipelines is proposed. Chapter 10 presents a digital array compressor design
based on C2PL (complex complementary pass-transistor logic). In Chapter
11, a hybrid programmable ANN design using BiCMOS circuit building
blocks is described. As an example of VLSI implementation, a finite ring
ANN given in Chapter 4 is also implemented in Chapter 12.

The effectiveness of parallel VLSI neural system design methodology is
illustrated by applying the designs to various pattern recognition
applications, and analyzing the performances of the given systems.

This book is not a primer in ANN, in that a certain amount of prior
knowledge, such as parallel processing and VLSI design, is assumed. It is my
hope that this book will contribute to our understanding of this new and
exciting discipline: Parallel VLSI Neural System Engineering.

David D. Zhang
The Hong Kong Polytechnic University
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VLSI Neural System
Design Methodology

In this chapter, we begin by introducing the background for artificial neural
networks (ANNs). Then, the existing ANN models, architectures and
hardware implementation techniques are briefly reviewed. This leads to the
definition of the research objective and provides insight into a parallel VLSI
neural system design methodology.

1.1 INTRODUCTION

ANNs are massively parallel interconnected networks of simple (usually
adaptive) nodes which are intended to interact with objects of the real world
in the same way as biological nervous systems do [1].

The interest in these networks is due to the general opinion that they are able
to perform some complicated and creative tasks, such as pattern recognition,
similar to the way they are performed by human brains [2,10,35]. The
implementations of these tasks by traditional computing methods have only
reached relatively low performances in some limited aspects or
environments. Nevertheless, as neural systems show some properties, like
association, generalization, parallel searching, and adaptation to changes in
the environment, which are analogous to human brain properties, they
promise improved results.

The usage of ANNs for pattern recognition may be traced back to the
perceptron models originated by Rosenblatt in 1950 [2]. The perceptron
models used the concept of reward and punishment. In late 1960s, the
progress in ANN models slowed down due to the limited capabilities of the
early single layer perceptron models. In the mid-1970s and early 1980s, with
the availability of enhanced computing power the progress in the
development of ANN models accelerated. Researchers were able to model
and test their theories about the functioning of the brain.
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Today a number of well-developed theories and models of ANNs are
available [3,34-36,40-47,55-64,198-201]. These networks consist of a large
number of simple processing elements called nodes that represent the
neurons. These nodes are interconnected by the synaptic connections. These
models are capable of learning and making decisions; and are suitable for a
variety of pattern recognition tasks [36,39].

Pattern recognition techniques can be grouped into two classes: supervised
and unsupervised techniques. In supervised methods, certain number of
samples is available for each category and these samples are used to train the
classifier. In the case of unsupervised classification no training samples are
available, and the network learns by detecting the similarity between the
input patterns.

Now many ANN models and algorithms for pattern recognition applications
are available. They include Back-Propagation (BP) learning, Competitive
learning, Kohonen learning, Adaptive Resonance Theory, Neocognitron
models, Hopfield Networks, and Boltzman machines [5-13]. Applications of
ANNSs include character recognition, human face identification, speech
recognition, multispectral image analysis, and expert systems [14-18]. The
BP learning is essentially of the supervised type and the network learns with
the help of training sets. The BP networks have been successfully used for
many pattern recognition problems [5,15-17].

Another important class of neural networks is self-organizing neural
networks. The networks with competitive learning algorithms are self-
organizing networks. Early models of competitive learning were developed
by Malsburg in his study of visual cortex [19]. Rumelhart and Zipser have
suggested an algorithm for competitive learning [9]. The main disadvantage
of competitive learning is that the network forgets its earlier learning with
new learning and the network may get set into an unstable state with the
spurious input patterns. To overcome this drawback, Grossberg developed an
adaptive resonance architecture [10-11] and Fukushima proposed the
Neocognitron models [12]. Kohonen developed a learning paradigm for self-
organizing networks known as Kohonen learning [6-7]. These algorithms can
be used for a variety of tasks in pattern recognition.

ANNs consist of parallel distributed processing (PDP) models. The PDP
models are well described in the work of Rumelhart and McCelland [4]. The
functional synthesis of these models consists of establishing a relationship
between the several inputs and one or more outputs. In ANN, the nodes are
connected to each other by the synaptic connections or the links. There is an
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associated synaptic strength or a weight with each connection. During the
learning, the weights which represent the knowledge stored in the network
are updated. The ANNSs consist of two or several layers of nodes and each
layer contains several nodes. The observed feature vector is presented to the
input nodes. The input values may represent the probability that the discrete
feature is present. Each possible decision or outcome can be represented by a
node in the output layer.

1.2 NEURAL NETWORK MODELS

ANNSs are information processing systems. Due to the variety of fields of
interest and applications, a broad range of ANN models has been emerged. In
all these fields, the term “neural networks” is characterized by a combination
of adaptive learning algorithms and parallel distributed implementations.
Although ANNSs are biologically motivated, their resemblance to the brain
models is not straightforward. Since the basic concepts of biological neural
networks provide a common ground for understanding the ANN models, we
will first introduce basic biological neural networks in order to appreciate the
differences and similarities with ANN.

1.2.1 Biological Neural Networks

As you know, the von Neumann computer performs poorly on certain tasks,
such as pattern recognition that humans handle routinely. It is interesting to
compare the human brain with a serial modern von Neumann computer from
the information processing aspects as shown in Table 1.1. Although the
neuron’s switching time (a few milliseconds) is about a million times slower
than modern computer elements, they have a thousand-fold greater
connectivity than today’s supercomputers. Furthermore, the brain is very
powerfully efficient — it consumes less than 100 watts — by contrast a
supercomputer may dissipate 10° watts.

The basic element of neural networks of a brain is a neuron. The neurons
consist of four basic parts: cell body, synapses, axons, and dendrites. The cell
body essentially sums the membrane potential provided by the synapses. The
synapses provide an output. Axons are the connections between the neurons
that carry charge, and the dendrites are the branch-like structures, which
provide the sensory input to a cell body (See Fig.1.1).
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In fact, the synapse represents the junction between an axon and a dendrite.
How two or more neurons interact remains largely mysterious, and
complexities of different neurons vary greatly. Generally speaking, a neuron
sends its output to other neurons via its axon. An axon carries information
through a series of action potentials, or waves of current, which depends on
the neuron’s voltage potential. More precisely, the membrane generates the
action potential and propagates down the axon and its branches, where
axonal insulators restore and amplify the signal as it propagates, until it
arrives at a synaptic junction.

v Cell Body Synapses
b» Dendrites ‘
t \__—&

Hillock zone

Fig.1.1 A prototype biological neuron

Table 1.1 Comparison between human brain and modern computer

Human Brain Modern Computer
Element 101141 LS e 10° transistors
10" synapses
Fanout 10° 3
Implementation Analog Digital
Processing passively parallel largely serial
Switching Time 10° s 107 s
Power 100 watts 10° watts
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There are several important features obtained from biological neural
networks, which apply to all ANNSs:

1) Each neuron acts independently of all others — each neuron's
output relies only on its constantly available inputs from the
abutting connections.

2) Each neuron relies only on local information — the information that
is provided by the adjoining connections.

3) The large number of connections provides a large amount of
redundancy and facilitates a distributed representation.

First two features allow neural networks to operate efficiently in parallel.
The last one provides neural networks with inherent fault-tolerance.

1.2.2 Artificial Neural Networks

ANNs mimic the functioning of the neural networks of a brain. ANN consists
of a large number of simple nodes. Each of the nodes is connected to another
node(s) through a synaptic connection or a link [34].

Information processing takes place through the interaction between the
nodes. Each node is associated with an activation value ¢, (). The

activation value passes through an activation function f(¢,) to provide an
actual output y (7). These outputs pass through the unidirectional synaptic
connections. There is an associated number, w; , called the weight or the

connection strength, that determines the amount of effect node i can have on
node ;. For each node all the inputs are combined, and the total input, along
with the current activation, determines the new activation value (Fig.1.2).

Usually ANNSs consist of a number of layers and nodes in each layer. The
most general model assumes the complete interconnections between all the
nodes, and resolves the cases of the nonconnected nodes (i, j) by setting the
weights w, = 0. A simple three-layer feedforward network is shown in

Fig.1.3. The networks can be synchronous or asynchronous. The
synchronous networks are controlled by clock pulses; whereas in
asynchronous networks the nodes respond instantaneously to the incoming
inputs.



