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Preface

The first four symposia in the series on turbulent shear flows have been held alternately in
the United States and Europe with the first and third being held at universities in eastern
and western States, respectively. Continuing this pattern, the Fifth Symposium on Turbulent
Shear Flows was held at Cornell University, Ithaca, New York, in August 1985. The meeting
brought together more than 250 participants from around the world to present the results
of new research on turbulent shear flows. It also provided a forum for lively discussions on
the implications (practical or academic) of some of the papers. Nearly 100 formal papers and
about 20 shorter communications in open forums were presented. In all the areas covered,
the meeting helped to underline the vitality of current research into turbulent shear flows
whether in experimental, theoretical or numerical studies.

The present volume contains 25 of the original symposium presentations. All have been
further reviewed and edited and several have been considerably extended since their first
presentation. The editors believe that the selection provides papers of archival value that, at
the same time, give a representative statement of€urrent reSearch in the four areas covered

by this book: 7 & ; =\
§ 4\2
— Homogeneous and Simple Flows { 9 i
— Free Flows \7q > o 3¢ /
— Wall Flows il

— Reacting Flows

Each of these sections begins with an introductory article by a distinguished worker in the
field. These articles provide both a thumbnail sketch of the contributions made by the
different papers and sets new contributions against the background of the research in the
field. It is the editors’ hope that in this way the book provides an up-to-date collection of
high quality papers for the expert and, at the same time, offers sufficient signposts to help
the newcomer (in conjunction with the earlier volumes in this series) to gain an appreciation
of the present preoccupations in turbulent flow research.

The papers in this volume are arranged according to their complexity. The accounts of
studies of homogeneous and simple flows include descriptions of modelling of pressure terms
of the scalar fluxes and considerations on inhomogeneous turbulence with applications to
boundary layer flows. Interactions of turbulent scales are studied and structural consider-
ations of homogeneous turbulence are presented. Wake shear layer interactions are de-
scribed and mixing layer and jet measurements presented. Particular attention is given to
wall boundary layer flows providing new experimental and numerical results. The last
section concentrates on experimental and numerical studies of combustion flows.

Financial support for the Fifth Symposium was generously contributed by the Boeing
Acrospace Company, and the ASME-Heat Transfer Division also kindly provided material
assistance. The success of the Cornell meeting depended strongly on the efforts of many
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individuals in various aspects of the pre-conference organization as well as in the highly
visible contributions during the Symposium itself.

As with earlier symposia responsibility for setting the technical programme rested with
a Papers Committee which for the Fifth Symposium was composed of J. L. Lumley (Chair-
man), B.E. Launder, W.C. Reynolds and J. H. Whitelaw. Each of the nearly two hundred
1000-word abstracts offered for presentation at the Symposium were reviewed by two
members of the Advisory Committee. Many Advisory Committee members later served as
session chairmen at the Symposium and have throughout been valuable sources of advice
and helpful criticism. The Advisory Committee consisted of:

R.J. Adrian I. Gartshore E. Krause
J.-C. Andre M. M. Gibson J.C. LaRue
L. H. Back V. W. Goldschmidt P.A. Libby

R. W. Bilger K. Hanjalic O. Martynenko
R. Blackwelder T. J. Hanratty J. Mathieu

R. Borghi J. R. Herring S.V. Patankar
R. Briley M. Hino G. Raithby
D. Bushnell M. Hirata W. Rodi

M. Coantic J.A. C. Humphrey U. Schumann
S. Corrsin A.K. M. F. Hussain R. L. Simpson
J. Cousteix J. P. Johnston K. Suzuki

J. K. Eaton P. N. Joubert W. Wyngaard
H. Fiedler

The editors of this book are also very thankful to the staff of Springer-Verlag who were
actively involved and helped greatly in the completion of the present book.

As this volume was going to press, the turbulent shear flows community was saddened
by the death of Stanley Corrsin after a long illness. Stan, who had contributed so much over
forty years to the measurement and understanding of turbulence, served as a member of the
Advisory Committee for all five TSF Symposia. To his memory, therefore, this volume is
affectionately dedicated.

Erlangen, November 1986 The Editors
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Turbulent Shear Flows

Selected Papers from the First
International Symposium on
Turbulent Shear Flows, The
Pennsylvania State University,
University Park, Pennsylvania, USA,
April 18-20, 1977

Editors: F. Durst, B.E. Launder, F.W. Schmidt,
J.H. Whitelaw

1979. 256 figures, 4 tables. VI, 415 pages.
ISBN 3-540-09041-X

Here is a survey of the latest developments in the
calculation of turbulent shear flows, emphasizing their
flow and heat transfer properties. The improvement of
physical understanding and related measurements is
considered essential throughout. Skill-fully edited and
carefully selected, a third of the papers presented at the
symposium have been included in this volume.

There are five distinct themes:

- Free shear flows

- Wall flows

- Recirculating flows

- Stress transport models

- Modeling developments.
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Selected Papers from the Second
International Symposium on
Turbulent Shear Flows, Imperial
College London, July 2-4, 1979

Editors: L.J.S. Bradbury, F.Durst, B.E. Launder,
F.W.Schmidt, J.H. Whitelaw

1980. 310 figures, 12 tables. IX, 391 pages.
ISBN 3-540-10067-9

The articles appearing in this volume were selected
from contributions to the 2nd Turbulent Shear Flows
Symposium held at the Imperial College London, July
2-4, 1979.

They reflect current research in five of the areas
addressed by the symposium: mathematical modelling
of turbulence, two-dimensional thin shear flows near
walls, coherent structures, environmental flows; and
complex flows involving recirculation and/or three-
dimensional straining.

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo

Selected Papers from the Third
International Symposium on
Turbulent Shear Flows, University
of California, Davis,

September 9-11, 1981

Editors: L.J.S. Bradbury, F. Durst, B.E. Launder,
F.W.Schmidt, J. H. Whitelaw
1982. 269 figures. VIII, 321 pages. ISBN 3-540-11817-9

This volume is a collection of papers from the Third
International Symposium on Turbulent Shear Flows
held at the University of California, Davis, September
1981. The papers are divided into four sections: wall
flows, scalar transport, recirculating flows and funda-
mentals. As with previous volumes, each section is
preceded by a brief introductory article whose purpose
is to make some general observations about the various
sections and to fit the individual papers into the
context of the general topic.
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Selected Papers from the Fourth
International Symposium on
Turbulent Shear Flows, University of
Karlsruhe, Karlsruhe, FRG,
September 12-14, 1983

Editors: L.J.S. Bradbury, F. Durst, B.E. Launder,
F.W.Schmidt, J. H. Whitelaw
1985. 286 figures. VIIL, 397 pages. ISBN 3-540-13744-0

Contents: Fundamentals. - Free Flows. - Boundary
Layers. - Reacting Flows. - Index of Contributors.

This is the fourth volume in a series which is destined
to become a standard reference in the study of
turbulent shear flows. It contains selected papers of the
Symposium held at Karlsruhe, Germany, all carefully
edited and reviewed. Each section is introduced by an
authoritative article which fits the individual contribu-
tions into the larger context of current research.
Compared with former volumes, greater empbhasis is
placed on experimental work and on the examination
of complex flows. Three-dimensional, recirculating and
reacting flows feature strongly in the programme and
are complemented by considerations of two-phase
flows and discussions of both numerical and experi-
mental techniques.
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Introductory Remarks

A.E. Perry
Department of Mechanical Engineering, University of Melbourne, Parkville, 3052, Australia

The papers selected for this chapter are all concerned either directly or indirectly with the
central problem of turbulence theory, which is to obtain realistic statistical solutions of the
Navier-Stokes and scalar transport equations and apply them to practical situations. Before
dealing with the papers in detail, it is important to remind ourselves of why this extremely
complex topic developed the way it did, take stock of its achievements and review the
direction it is heading.

Most efforts of the past have focused on homogeneous turbulence. Because of its relative
simplicity, isotropic homogeneous turbulence has been studied the most. Between the years
of 1930 and 1960 most of the basic formulations of the problem were made and the state of
knowledge for that period is well summarized in books by Batchelor (1971), Townsend (1976)
and Hinze (1975). It has not been possible even for the simple isotropic case to obtain general
complete solutions for the differential equations involved except for the final period of decay
of grid turbulence. The essential difficulty is that the Navier-Stokes equations when time or
ensemble averaged do not yield a closed set of differential equations for the velocity covar-
iance. To quote Kraichnan (1959) “the equation of motion for this covariance contain
third-order moments of the velocity field, the equations of motion for the third-order
moments contain fourth-order moments and so fourth ad infinitum. A central goal of turbu-
lence theory is the closing of this infinite chain of coupled equations into a determinate set
containing only moments below some finite order”. During the 70’s and up to the present
day a world wide industry has sprung up devoted to this closure problem. The practical
enigneer may well ask why we torture ourselves attempting what has proved to be a most
difficult if not impossible task and why concentrate on homogeneous turbulence. Surely with
modern large computers we could solve the complete time dependent Navier-Stokes equa-
tions by specifying the appropriate initial and boundary conditions and allow the solution
to run its course.

As Leslie (1973) states (and it is still true today) “The short answer is that large though
they are, present day computers are not large enough”. A mesh must be sufficiently fine to
resolve the dissipating eddies. The so called “Full Direct Simulations“ or “Full Turbulence
Simulations* mentioned in some of the papers here, attempt to do this. However, they are
limited to low Reynolds numbers. For channel flow, Leslie quotes 10® mesh points are
required for (Re) = 10* and 10** for (Re) = 10° where (Re) is the channel flow Reynolds
number. Also the number of time steps required for numerical stability rises rapidly with
(Re). See also Corrsin (1961). For one of the papers here, the numbers of mesh points used
is of order 10°. Then there is the question of running time and cost. A simulation needs to
be run many times to obtain ensemble averages with stable statistics although if homoge-
neous turbulence is considered we could average along the homogeneous direction (Lumley
and Bejan Khajeh-Nouri, 1974). It has been the experience of the writer that using “nature’s
own computer” — namely, the wind tunnel, 40,000 data samples are needed for convergence
of quantities like Reynolds shear stress at a point with 1% repeatability.

Turbulent Shear Flows 5
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The reason why there has been such an interest in homogeneous isotropic turbulence is
that this is the case we know most about. In more general flow situations, perturbations
about this “basic” flow are made and most papers considered in this chapter are concerned
with various types of perturbations of this basic state. Many early schemes were based on
the so called two-point closure methods where the equations for the two-point correlations
were often solved in wavenumber space. Even when truncated to fourth order moments, the
computational power required for such simulations can often rival that needed for the
Full-Direct Simulations as is pointed out in the paper by Bertoglio and Jeandal given later
in this chapter. Unless someone can come up with a better idea, it appears that the only hope
we have at present of producing practical computational methods is to develop closure
models for what Lumley (1978) calls “second order modelling” or “invariant modelling” or
what the French call “one-point closure”. The k — ¢ model is an example of this. Inspired
by some early ideas of Donaldson (1968), workers developed a general tensor notation and
expressed everything as far as possible in an invariant form. All unknown correlations are
expressed in terms of the second order correlations. With this invariant form, models
developed for one flow geometry, with all of the associated empirically determined constants,
have the greatest likelihood of being applicable in another flow geometry. However, since
we need to truncate to a finite probability moment (usually the fourth) and because of the
necessary over simplications made in the modelling details, there will probably never be a
single “law of turbulence” based on this formulation for all cases. The method is basically
an expansion about the homogeneous stationary case and Lumley (1978) sums up the
underlying philosophy when explaining why it can be successfully used for flows with
appreciable inhomogeneity; “by following a rational procedure we have created a physically
possible phenomenon, not quite real turbulence perhaps, but one which conserves momen-
tum and energy; transports the right amount of everything budgeted (momentum, energy,
Reynolds stress, heat flux, etc.) although not by quite the right mechanism; satisfies realiz-
ability (so that non-negative quantities are never negative, Schwarz’ inequality is always
satisfied, etc.); behaves correctly for both large and small Reynolds numbers; and reduces to
real turbulence in one limit (weak inhomogeneity and unsteadiness.) Probably any mecha-
nism that satisfied all of these restrictions would behave about the same”.

Many of the papers here are concerned with this modelling although there are also
hybrid models. Let us consider the papers in detail.

The first paper is by T. Dakos and M. M. Gibson “On Modelling the Pressure Terms of
the Scalar Flux Equations”. The emphasis is placed on modelling the pressure and scalar

gradient correlation <£ 60> which appears in the equation for the scalar flux {u;0). The

0 Ox;
method assumes nearly homogeneous undirectional flow with a weak mean scalar gradient.

Part of the expression for <£ i
0 Ox
formal solutions in wavenumber space. The remaining part is modelled using dimensional
considerations and conventional ideas about the dependence on second moments and the
anisotropy tensor. Various coefficients have been evaluated from the data of Sirivat and
Warhaft (1982), Dakos (1985) and Tavoularis and Corrsin (1981). The authors hope in the
near future to see if the model will correctly predict inhomogeneous flow data.

The second paper is by J. P. Bertoglio and D. Jeandel “Simplified Spectral Closure for
Homogeneous Turbulence: Application to the Boundary Layer”. The authors consider this as
an “attempt to show that two-point closures can provide practical tools for computing
complex flows”. They point out that the application of the two-point closure scheme,
particularly the Eddy Damped Quasi-Normal Markovian theory by Orszag (1970) to inho-
mogeneous turbulence in its full form, would probably require as much computational

has been derived from theoretical considerations using

i
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power as a Large Eddy Simulation or even a Fully Direct Simulation. However, the authors
suggest that by means of certain crude assumptions perhaps some aspects of the two-point
modelling (for the energy transfer between wavenumbers) could be combined with single
point modelling (eg. the k — & model) for the inhomogeneous transport terms. Based on this,
the authors claim to have produced a method of calculation which is “one step further in
sophistication than the standard k — ¢ model” and does not suffer from many of the disad-
vantages of that model. Comparison with the data of Klebanoff (1955) look promising,
although these days there is an abundance of more extensive and detailed data which the
authors could have chosen. Perhaps this data will be used in future work.

The third paper to be considered here is “The Interaction of Two Distinct Turbulent
Velocity Scales in the Absence of Mean Shear” by S. Veeravalli and Z. Warhaft. Here we have
a novel perturbation to homogeneous turbulence which is sufficiently simple to give insights
into many aspects of scale interactions and transport phenomena. A shearless mixing layer
bounded by two homogeneous fields of different properties is considered. The first experi-
ment along these lines was carried out by Gilbert (1980). However, here a greater scale ratio
of the two streams is considered and this reveals vital effects unobserved by Gilbert. The
authors point out that the important point about this work is that this “second order”
mixing layer focuses particular attention on the third and fourth moments and has a
distinctly different character to the “first order” mixing layer where production of kinetic
energy and shear stress play an important role. Furthermore with the shearless layer, simple
gradient diffusion models are quite inadequate. The experimental results are preliminary but
the facility could readily be used for investigating the transport of scalar quantities in the
near future.

“The Mixing Layer Between Turbulent Fields of Different Scales” by S. B. Pope and C. D.
Howarth follows on from the previous paper. Here a model is proposed which fits the data
of Veeravalli and Warhaft rather well. The model is based on a transport equation for the
joint probability density function of the three components of velocity as formulated by Pope
(1981). A novel feature of the modelling is the use of a Lagrangian formulation for the
dissipation and a simple relaxation equation is used to account for the fact that packets of
fluid can traverse the layer from the large scale side (say) to the small scale side more rapidly
than the turbulence in the packet can respond to its changed surroundings. As discussed by
Veeravalli and Warhaft, the most revealing statistics are in the third and fourth moments.

In the next paper “on the Structure of Homogeneous Turbulence” by J. Lee and William
C. Reynolds a Full Turbulence Simulation is being used. Here homogeneous turbulence is
subjected to irrotational strains. A code developed by Rogallo (1981) is used to provide
“data” which might be useful for the formulation of closure hypotheses in the “single point”
or “second order” modelling methods as summarized by Lumley (1978). If the computations
can be believed, considerable insights are provided. Anisotropy invariant maps are produced
which have the boundaries identified by Lumley.

Turbulence which is initially isotropic is subjected to various irrotational strain rates. It
is found that the vorticity field is more anisotropic than the velocity field, likely due to
definition and Reynolds number. Most models including those of Launder et al. (1975) and
Lumley (1978) assume that the “return to isotropy” tensor ¢,; is correlated with the aniso-
tropy tensor b;; whereas these simulations show that ¢,; correlates better with the dissipation
rate anisotropy d;;. A simple relationship is given which not only agrees with the runs given
in this paper but also with the shear runs of Rogallo (1981). As he points out, these
simulations are limited to a small range of eddy scales. Nevertheless, “data” can be provided
concerning those aspects of turbulence which are most difficult to resolve in wind tunnel
experiments. Hence such simulations might well compliment experiments for the formula-
tion of more efficient closure schemes.



The final paper of this selection is “Turbulence in a stably stratified shear Flow: A Progress
Report” by J.J. Rohr, K. N. Helland, E. C. Itsweire and W.C. Van Atta. This describes work
of an experimental nature where sheared homogeneous turbulence is studied in a salt
statified water channel. It is found that the results exhibit trends similar to ocean data in
regions where the turbulence is growing under the combined influence of shear and buoyan-
cy but not in regions close to the grid where buoyancy is relatively unimportant. It appears
that the facility developed will be most relevant to the interpretation of oceanic microstruc-
ture data and for the modelling of turbulence in stratified fluids.
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On Modelling the Pressure Terms of the Scalar Flux Equations

T. Dakos and M. M. Gibson
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Abstract

The paper is concerned with the problem of modelling the ensemble averaged product of the pressure
and scalar gradient that appears in the equations for the scalar flux <u;0). The method (for nearly
homogeneous unidirectional flow with weak gradients) is to derive nonlinear expressions for the fluc-
tuating parts of the pressure and the scalar by formal solution (in wave vector space) of the Navier-
Stokes and the scalar equations. Substitution in the Fourier transform of the pressure correlation shows
that this quantity is the sum of four terms, one of which contains the mean scalar gradient. A fourth-
order cumulant discard approximation allows this term to be expressed in terms of the single point
double products and the turbulent energy and stress spectra. A numerical calculation is made when the
spectra are represented by simple functions. Finally, a tentative model is proposed in which the
remaining terms of the pressure correlation are evaluated by reference to experimental data.

Nomenclature
b;; Anisotropy tensor {uu Reynolds stress

2<uu/q* — 26,/3 {u;0> Scalar flux
Cyy — Cys  Turbulence model constants vV Volume
I(r,t) Quantity defined by Eq. (7) v? 14
Gol(r, t; 1y, t;) Green’s function, Eq. (10) q* = {uwu;» 2 x turbulent kinetic energy
k Wave vector x; (i=1,3) Cartesian coordinates

i J component of k; vector o, B,y Constants in spectrum models

N(k,1t) Fourier transform defined 0 Dirac delta function

by Eq. (5) 0y Kronecker delta
P Turbulent energy production rate £ Turbulent energy dissipation rate
)4 Fluctuating part of the pressure 0 Fluctuating part of scalar quantity
Pr, Turbulent Prandtl number A Diffusivity
r Position vector I Fluid density
S;j(k, t, t;) Two-time energy spectrum tensor D Pressure-scalar-gradient corre-
S;;(k, 1) One-time energy spectrum tensor lation
T Mean value of scalar quantity y ¥
¢ Time Subscripts and Superscripts
U Mean velocity i,j, k Tensor indices
u Velocity vector % Complex conjugate

Introduction

In order to close the equations for the turbulent stresses and scalar fluxes it is necessary to
model the correlations that contain the fluctuating part of the pressure. Because the pressure
interactions are responsible for the distribution of turbulent kinetic energy between compo-
nents, it has been convenient to rearrange the pressure term in the stress equations as the
sum of a divergence (which is added to the turbulent diffusion) and a traceless distributive
term (the pressure-strain correlation). Rotta [1] appears to have been the first to recognize
the value of further splitting the pressure-strain correlation into a non-linear turbulence part,
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and a “rapid” part containing the mean velocity gradient, so that the two parts could be
modelled separately. The first step in the analogous treatment of the pressure terms in the
scalar-flux equations is to introduce the fluctuating scalar gradient by writing

0 o 0 0 00
g o N 1§ —’L>—<£f>, (1)
0 0x; Ox, \ ¢ 0 Ox;

where the first part may be added to the transport terms as “pressure diffusion”. The second

step is to take the divergence of the Navier-Stokes equations and multiply the solution of
the resulting Poisson equation for p by df/dx;. The well-known result [2]

(O R O CR
0 d0x;/ 4n I 0x,;0x;) 0Ox; 0x; 0x;) Ox; r

(where the primes mean that quantities so marked are evaluated at x + r) indicates that the
pressure-scalar-gradient correlation also consists of turbulence and velocity-gradient com-
ponents. The mean scalar gradient does not appear explicitly here and it is also usually
omitted from models of the correlation, but not by Jones and Musonge [3]. These authors
argue that, because both terms in the integral depend on the mean field, there is no point
in modelling them separately. They show that the inclusion of a scalar-gradient term in the
model, and the use of a scalar time scale in the turbulence-only part, produces good results
for the strongly sheared, nearly-homogeneous, free shear flow realized by Tavoularis and
Corrsin [4], where appreciable departures from equilibrium provide a demanding test for
modelling techniques.

We now approach the problem from a different direction, following closely the lead of
Weinstock [5, 6], who has used the Fourier-transform method to calculate the pressure-strain
terms in the stress equations for a simple turbulent shear flow at high Reynolds numbers.
We now use this method to derive nonlinear expressions for the fluctuating parts of the
pressure and the scalar by formal solution (in wave-vector space) of the Navier-Stokes and
the scalar equations. These expressions are substituted in the Fourier transform of the
pressure-scalar-gradient correlation which is then expressed as the sum of four terms in
turbulence quantities only, the mean velocity gradient, the mean scalar gradient, and the
product of the two mean gradients. Although we have, for simplicity, limited the analysis to
nearly homogeneous unidirectional flow with weak gradients, the results are still too compli-
cated for immediate application to practical flow calculation. It is, however, possible to
express the scalar-gradient term in terms of the single-point velocity products and the
turbulent energy and stress spectrum functions. The method (like Weinstock’s) is based on
the neglect of the cumulant of the two-time fourth-order correlation that is basic to the
direct-interaction approximation but here, as in Weinstock’s analysis, the goal is not to
calculate the spectra but to derive part of the pressure correlation in terms of the spectra.
An approximate calculation of the term is made when the spectra are represented by simple
functions. Finally, a tentative model is proposed in which the remaining terms are evaluated
by reference to measurements in equilibrium free flow and to the data of Tavoularis and
Corrsin [4]. The analysis is straightforward but lengthy, particularly for the second part
concerning the scalar-gradient term. For some details the reader is referred to the two papers
by Weinstock (as a guide to the method) and to the thesis by Dakos [7].




