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Foreword

This is a remarkable book. Arthur Yaghjian is by training and profession an
electrical engineer; but he has a deep interest in fundamental questions usually
reserved for physicists. He has studied the relevant papers of an enormous
literature that accumulated for longer than a century. The result is a fresh and
novel approach to old problems providing better solutions and contributing
to their understanding.

Physicists since Lorentz in the late nineteenth century have looked at
the equations of motion of a charged object primarily as a description of a
fundamental particle, typically the electron. Since the limitations of classical
physics due to quantum mechanics have long been known, Yaghjian considers a
macroscopic object, a spherical insulator with a surface charge. He thus avoids
the pitfalls that have misguided research in the field since Dirac’s famous paper
of 1938.

The first edition of this book, published in 1992, was an apt tribute to
the centennial of Lorentz’s seminal paper of 1892 in which he first proposed
the extended model of the electron. In the present second edition, attention is
also paid to very recent work on the equation of motion of a classical charged
particle. Mathematical approximations for specific applications are clearly dis-
tinguished from the physical validity of their solutions. It is remarkable how
these results call for empirical tests yet to be performed at the necessarily ex-
treme conditions and with sufficiently high accuracy. In these important ways,
the present book thus revives interest in the classical dynamics of charged ob-
jects.

Syracuse University Fritz Rohrlich
2005



Preface to the Second Edition

Chapters 1 through 6 and the Appendices in the Second Edition of the book
remain the same as in the First Edition except for the correction of a few
typographical errors, for the addition and rewording of some sentences, and
for the reformatting of some of the equations to make the text and equations
read more clearly. A convenient three-vector form of the equation of motion
has been added to Chapter 7 that is used in expanded sections of Chapter 7 on
hyperbolic and runaway motions, as well as in Chapter 8. Several references
and an index have also been added to the Second Edition of the book.

The method used in Chapter 8 of the First Edition for eliminating the
noncausal pre-acceleration from the equation of motion has been generalized
in the Second Edition to eliminate pre-deceleration as well. The generalized
method is applied to obtain the causal solution to the equation of motion
of a charge accelerating in a uniform electric field for a finite time interval.
Alternative derivations of the Landau-Lifshitz approximation to the Lorentz-
Abraham-Dirac equation of motion are also given in Chapter 8 along with
Spohn’s elegant solution of this approximate equation for a charge moving
in a uniform magnetic field. A necessary and sufficient condition is found for
this Landau-Lifshitz approximation to be an accurate solution to the exact
Lorentz-Abraham-Dirac equation of motion.

Many of the additions that have been made to the Second Edition of the
book have resulted from illuminating discussions with Professor W.E. Baylis
of the University of Windsor, Professor Dr. H. Spohn of the Technical Uni-
versity of Munich, and Professor Emeritus F. Rohrlich of Syracuse University.
Dr. A. Nachman of the United States Air Force Office of Scientific Research
supported and encouraged much of the research that led to the Second Edition
of the book.

Concord, Massachusetts Arthur D. Yaghjian
2005



Preface to the First Edition

This re-examination of the classical model of the electron, introduced by H. A.
Lorentz 100 years ago, serves as both a review of the subject and as a context
for presenting new material. The new material includes the determination
and elimination of the basic cause of the pre-acceleration, and the derivation
of the binding forces and total stress-momentum-energy tensor for a charged
insulator moving with arbitrary velocity. Most of the work presented here was
done while on sabbatical leave as a guest professor at the Electromagnetics
Institute of the Technical University of Denmark.

I am indebted to Professor Jesper E. Hansen and the Danish Research
Academy for encouraging the research. I am grateful to Dr. Thorkild B.
Hansen for checking a number of the derivations, to Marc G. Cote for helping
to prepare the final camera-ready copy of the manuscript, and to Jo-Ann M.
Ducharme for typing the initial version of the manuscript.

The final version of the monograph has benefited greatly from the help-
ful suggestions and thoughtful review of Professor F. Rohrlich of Syracuse
University, and the perceptive comments of Professor T. T. Wu of Harvard
University.

Concord, Massachusetts Arthur D. Yaghjian
April, 1992
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1

Introduction and Summary of Results

The primary purpose of this work is to determine an equation of motion for
the classical Lorentz model of the electron that is consistent with causal so-
lutions to the Maxwell-Lorentz equations, the relativistic generalization of
Newton’s second law of motion, and Einstein’s mass-energy relation. (The
latter two laws of physics were not discovered until after the original works of
Lorentz, Abraham, and Poincaré. The hope of Lorentz and Abraham for de-
riving the equation of motion of an electron from the self force determined by
the Maxwell-Lorentz equations alone was not fully realized.) The work begins
by reviewing the contributions of Lorentz, Abraham, Poincaré, and Schott
to this century-old problem of finding the equation of motion of an extended
electron. Their original derivations, which were based on the Maxwell-Lorentz
equations and assumed a zero bare mass, are modified and generalized to ob-
tain a nonzero bare mass and consistent force and power equations of motion.
By looking at the Lorentz model of the electron as a charged insulator, gen-
eral expressions are derived for the binding forces that Poincaré postulated
to hold the charge distribution together. A careful examination of the classic
Lorentz-Abraham derivation reveals that the self electromagnetic force must
be modified during a short time interval after the external force is first ap-
plied and after all other nonanalytic points in time of the external force. The
resulting modification to the equation of motion, although slight, eliminates
the noncausal pre-acceleration (and pre-deceleration) that has plagued the
solution to the Lorentz-Abraham equation of motion. As part of the analysis,
general momentum and energy relations are derived and interpreted physi-
cally for the solutions to the equation of motion, including “hyperbolic” and
“runaway” solutions. Also, a stress-momentum-energy tensor that includes
the binding, bare-mass, and electromagnetic momentum-energy densities is
derived for the charged insulator model of the electron, and an assessment
is made of the redefinitions of electromagnetic momentum-energy that have
been proposed in the past to obtain a consistent equation of motion.

Many fine articles have been written on the classical theories of the elec-
tron, such as [7], [32], [41], [42], [52], [71], and [72], to complement the original
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works by Lorentz [4], Abraham (3], Poincaré [19], and Schott [16]. However,
in returning to the original derivations of Lorentz, Abraham, Poincaré, and
Schott, re-examining them in detail, modifying them when necessary, and sup-
plementing them with the results of special relativity not contained explicitly
in the Maxwell-Lorentz equations, it is possible to clarify and resolve a num-
ber of the subtle problems that have remained with the classical theory of the
Lorentz model of the extended electron.

An underlying motivation to the present analysis is the idea that one
can separate the problem of deriving the equation of motion of the extended
model of the electron from the question of whether the model approximates an
actual electron. Hypothetically, could not one enter the classical laboratory,
distribute a charge e uniformly on the surface of an insulating sphere of radius
a, apply an external electromagnetic field to the charged insulator and observe
a causal motion predictable from the relativistically invariant equations of
classical physics? Moreover, the short-range polarization forces binding the
excess charge to the surface of the insulator need not be postulated, but
should be derivable from the relativistic generalization of Newton’s second law
of motion applied to both the charge and insulator, and from the requirement
that the charge remain uniformly distributed on the spherical insulator in its
proper inertial frame of reference. A summary of the results in each of the
succeeding chapters follows.

Chapter 2 introduces the original Lorentz-Abraham force and power equa-
tions of motion for Lorentz’s relativistically rigid model of the electron moving
without rotation! with arbitrary velocity. Lorentz and Abraham derived their
force equation of motion by determining the self electromagnetic force induced
by the moving charge distribution upon itself, and setting the sum of the ex-
ternally applied and self electromagnetic force equal to zero, that is, they
assumed a zero “bare mass.” Similarly, they derived their power equation of
motion by setting the sum of the externally applied and self electromagnetic
power (work done per unit time by the forces on the charge distribution) equal
to zero.

To the consternation of Abraham and Lorentz, these two equations of
motion were not consistent. In particular, the scalar product of the veloc-
ity of the charge center with the self electromagnetic force (force equation of
motion) did not equal the self electromagnetic power (power equation of mo-
tion). Merely introducing a nonzero bare mass into the equations of motion
does not remove this inconsistency between the force and power equations of
motion. Moreover, it is shown that the apparent inconsistency between self
electromagnetic force and power is not a result of the electromagnetic mass in

! The work of Nodvik [8, eq. (7.28)] shows that the effect of a finite angular velocity
of rotation on the self force and power of the Lorentz model approaches zero to
the order of the radius of the charge as it approaches zero and thus classical
rotational effects are of the same order as the higher order terms neglected in the
Lorentz-Abraham equations of motion.
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the equations of motion equaling 4/3 the electrostatic mass, nor a necessary
consequence of the electromagnetic momentum-energy not transforming like
a four-vector. The 4/3 factor occurs in both the force and power equations
of motion, (2.1) and (2.4), and it was of no concern to Abraham, Lorentz, or
Poincaré in their original works which, as mentioned above, appeared before
Einstein proposed the mass-energy relationship.

Neither the self electromagnetic force-power nor the momentum-energy
transforms as a four-vector. (For this reason, they are referred to herein as
force-power and momentum-energy rather than four-force and four-momen-
tum.) However, there are any number of force and power functions that could
be added to the electromagnetic momentum and energy that would make
the total momentum-energy (call it G*) transform like a four-vector, and yet
not satisfy dG*/ds u; = 0, so that the inconsistency between the force and
power equations of motion would remain. Conversely, it is possible for the
proper time derivatives of momentum and energy (force-power) to transform
as a four-vector and satisfy dG*/ds u; = 0 without the momentum-energy
G* itself transforming like a four-vector. In fact, Poincaré introduced binding
forces that removed the inconsistency between the force and power equations
of motion, and restored the force-power to a four-vector, without affecting the
4/3 factor in these equations or requiring the momentum and energy of the
charged sphere to transform as a four-vector.

The apparent inconsistency between the self electromagnetic force and
power is investigated in detail in Chapter 3 by reviewing the Abraham-Lorentz
derivation and rigorously rederiving the electromagnetic force and power for a
charge moving with arbitrary velocity. For the Lorentz model of the electron
moving with arbitrary velocity, one finds that the Abraham-Lorentz deriva-
tion depends in part on differentiating with respect to time the velocity in the
electromagnetic momentum and energy determined for a charge distribution
moving with constant velocity. Although Lorentz and Abraham give a plausi-
ble argument for the validity of this procedure, the first rigorous derivation of
the self electromagnetic force and power for the Lorentz electron moving with
arbitrary velocity was given by Schott in 1912, several years after the origi-
nal derivations of Lorentz and Abraham. Because Schott’s rigorous derivation
of the electromagnetic force and power, obtained directly from the Liénard-
Wiechert potentials for an arbitrarily moving charge, is extremely involved
and difficult to repeat, a much simpler, yet rigorous derivation is provided in
Appendix B.

It is emphasized in Section 3.1 that the self electromagnetic force and
power are equal to the internal Lorentz force and power densities integrated
over the charge-current distribution of the extended electron, and thus one has
no a priori guarantee that they will obey the same relativistic transformations
as an external force and power applied to a point mass. An important conse-
quence of the rigorous derivations of the electromagnetic force and power of
the extended electron, with arbitrary velocity, is that the integrated self elec-
tromagnetic force, and thus the Lorentz-Abraham force equation of motion
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of the extended electron, is shown to transform as an external force applied
to a point mass. However, the rigorous derivations also reveal that the in-
tegrated self electromagnetic power, and thus the Lorentz-Abraham power
equation of motion, for the relativistically rigid model of the extended elec-
tron do not transform as the power delivered to a moving point mass. This
turns out to be true even when the radius of the charged sphere approaches
zero, because the internal fields become singular as the radius approaches zero
and the velocity of the charge distribution is not the same at each point on a
moving, relativistically rigid shell. Thus, it is not permissible to use the sim-
ple point-mass relativistic transformation of power to find the integrated self
electromagnetic power of the extended electron in an arbitrarily moving iner-
tial reference frame from its small-velocity value. (This is unfortunate because
the proper-frame and small-velocity values of self electromagnetic force and
power, respectively, are much easier to derive than their arbitrary-frame values
from a series expansion of the Liénard-Wiechert electric fields; see Appendix
A) X

The rigorous derivations of self electromagnetic force and power in Chap-
ter 3 critically confirm the discrepancy between the Lorentz-Abraham force
and power equations of motion. Chapter 4 introduces a more detailed pic-
ture of the Lorentz model of the electron as a charge uniformly distributed
on the surface of a nonrotating insulator that remains spherical with radius
a in its proper inertial reference frame. (The values of the permittivity and
permeability inside the insulating sphere are assumed to equal those of free
space.) Applying the relativistic version of Newton’s second law of motion
to the surface charge and insulator separately, we prove the remarkable con-
clusion of Poincaré that the discrepancy between the Lorentz-Abraham force
and power equations of motion is caused by the neglect of the short-range
polarization forces binding the charge to the surface of the insulator. Even
though these short-range polarization forces need not contribute to the total
self force or rest energy of formation, they add to the total self power an
amount that exactly cancels the discrepancy between the Lorentz-Abraham
force and power equations of motion. Moreover, the power equation of motion
modified by the addition of the power delivered by the binding forces now
transforms relativistically like power delivered to a point mass. With the ad-
dition of Poincaré binding forces, the power equation of motion of the Lorentz
model of the electron derives from the Lorentz-Abraham force equation of
motion, and no longer needs separate consideration.

Of course, Poincaré did not know what we do today about the nature
of these surface forces when he published his results in 1906, so he simply
assumed the necessity of “other forces or bonds” that transformed like the
electromagnetic forces. Also, Poincaré drew his conclusions from the analysis
of the fields and forces of a charged sphere moving with constant velocity;
see Section 4.1. The derivation in Section 4.2 from the relativistic version of
Newton’s second law of motion reveals, in addition to the original Poincaré
stress, both “inhomogeneous” and “homogeneous” surface stresses that are



