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Preface

This book is based on the lecture notes of courses given by the author over the
last decade at the Otto-von-Guericke University of Magdeburg and the Technical
University of Berlin. Since the author is concerned with researching material the-
ory and, in particular, elasto-plasticity, these courses were intended to bring the
students close to the frontiers of today's knowledge in this particular field, an
opportunity now offered also to the reader.

The reader should be familiar with vectors and matrices, and with the basics of
calculus and analysis. Concerning mechanics, the book starts right from the be-
ginning without assuming much knowledge of the subject. Hence, the text should
be generally comprehensible to all engineers, physicists, mathematicians, and
others.

At the beginning of each new section, a brief Comment on the Literature con-
tains recommendations for further reading. Throughout the text we quote only the
important contributions to the subject matter. We are far from being complete or
exhaustive in our references, and we apologise to any colleagues not mentioned in
spite of their important contributions to the particular items.

It is intended to indicate any corrections to this text on our website
http://www.uni-magdeburg.de/ifme/l-festigkeit/elastoplasti.html

along with remarks from the readers, who are encouraged to send their frank criti-
cisms, comments and suggestions to

bertram@mb.uni-magdeburg.de.

All the author’s royalties from this issue will be donated to charitable organisa-
tions like Terres des Hommes.

Acknowledgment. The author would like to thank his teachers RUDOLF TROSTEL,
ARNOLD KRAWIETZ, and PETER HAUPT who taught him Continuum Mechanics in the
early seventies, and since then have continued to give much helpful advice.

Many colleagues and friends also made useful comments and suggestions to improve this
book, including ENRICO BROSCHE, CARINA BRUGGEMANN, SAMUEL FOREST,
SVEN KASSBOHM, THOMAS KLETSCHKOWSKI, JOHN KINGSTON, WOLFGANG
LENZ, GERRIT RISY, MANUELA SCHILDT, MICHAEL SCHURIG, GABRIELE
SCHUSTER, BOB SVENDSEN and, most of all, THOMAS BOHLKE and ARNOLD
KRAWIETZ, who gave countless valuable comments. The author is grateful to all of them.
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Introduction

While several text books on non-linear elasticity have already been published,
the subject of finite plasticity appears not yet to have gained the maturity of a
textbook science, in spite of its paramount importance for practical applications in,
e.g., metal-forming simulations. One of the reasons for this surprising fact is that
even the fundamental concepts of plasticity still lack a rational introduction based
on clear physical and mathematical reasoning. One of the aims of this book is to at
least partially reduce such shortcomings of plasticity theory (see the last chapter).

We intend to introduce plasticity in a rational way, i.e., based on axiomatic
assumptions with clear physical and mathematical meanings. We are far from
believing that this has already been successfully completed. Too many questions
are still to be answered and need further concretisation. So the part of this book on
plasticity can be considered as an essay, which shall stimulate and encourage
further research work.

In our opinion, it takes a solid grounding in finite elasticity to properly under-
stand finite plasticity. Therefore, we will introduce the fundamental concepts of
elasticity in some detail. Before we do so, however, a careful description of non-
linear continuum mechanics shall be given. As almost all quantities in continuum
mechanics are described by tensors or tensor fields of different order, the book
starts with an introduction to tensor algebra and analysis. This is necessary be-
cause many different notations of tensor calculus are used in the literature.

In mechanics, like any other precise science, it is impossible in principal to de-
fine all concepts. Certain concepts and laws have to be introduced as primitive
ones, relying on an a priori empirical understanding of the reader. Based on these
primitive concepts, we can then derive other concepts by definition. And only if a
certain structure of the theory has been constructed, can we try and assess the
validity of our axioms. Such an axiomatic approach is aimed at in the present
context. We try to give all the concepts used a certain mathematical rigour, with-
out revelling in pure formalisms.

The author considers himself as following in the tradition of the Berlin school of
continuum mechanics, which was made famous by the likes of GEORG HAMEL,
ISTVAN SZABO, WALTER NOLL, RUDOLF TROSTEL, HUBERTUS
WEINITSCHKE, ARNOLD KRAWIETZ, and PETER HAUPT. It seems that this
school no longer exists in Berlin, some of its members have already passed away,
while others left to spread these ideas across the world.

A word on notation. It should be mentioned in passing that one of the early hab-
its of this school was to use a direct notation for vectors and tensors, long before it
became fashionable. Of course, we will adopt this elegant notation here whenever
it is feasible.



2 INTRODUCTION

It is practically impossible to give each symbol a unique meaning, without
drowning in indices, tildes, primes, etc. The reader will therefore be confronted
with some double meanings in the book, but we have always tried to avoid confu-
sion. For this purpose, a list of the symbols repeatedly used in different parts of
the book has been included at the beginning of the book. We have always tried to
use notations that are common in today's literature, which has been hugely influ-
enced by the masterpiece of TRUESDELL/ NOLL (1964), which included elas-
ticity, but unfortunately not plasticity. Only on a few occasions do we prefer dif-
ferent notations. As an example, all scalar products in this text are denoted by a
dot, regardless of the rank of tensors involved.



1 Mathematical Preparation

A Comment on the Literature. Although this mathematical preparation is rather
detailed in the field of tensor calculus, basic knowledge of mathematics is re-
quired. For further reading we recommend the books by LOOMIS/ STERNBERG
(1968), CHOQUET-BRUHAT et al. (1977), and FLEMING (1977).

In continuum mechanics physical quantities can be
o scalars or reals, like time, energy, power,
e vectors, like position vectors, velocities, or forces,
e tensors, like deformation and stress measures.

Since we can also interpret scalars as Oth-order tensors, and vectors as /st-order
tensors, all continnum mechanical quantities can generally be considered as ten-
sors of different orders.

They can either be defined for the whole body as a global variable (like the re-
sulting force acting on a body), or as local or field variables, i.e. defined in every
point of a body (like its velocity).

Our short mathematical preparation shall make us familiar with the mathemati-
cal concept of tensors. We will start with the algebra of tensors. Thereafter, we
will consider tensor functions or tensor fields, on which we can perform calculus
or tensor analysis. Finally, we will consider integrals over such fields, which will
give us resulting tensors or mean values of fields.

Notations. The standard notation of scalars (reals) is by italic letters like «, 3, ...
or a,b, ...For vectors we will use small Latin letters in bold like a, b, ....
2nd-order tensors are notated by large Latin letters in bold like A, B, ... . For

4th-order tensors we use larger and italic letters like A, B ... . Sets and spaces
are notated in cursive, like

R the set of real numbers
R the set of positive real numbers
R" the set of n ordered real numbers (n-tuples).

If 7 'and # are sets, a mapping or function
f: V> W

assigns to each element of its domain 7" uniquely one element of its range #"
If we want to give the variables names, we write

fivibw.

Clearly, the argument is v € 7 and its value or image under fis w=f(v)e¥.



