Y

\7
S \:'\" '
¥

R’/ '/

$
3 %, Turbulent

Flows
Stephen B. Pope



Turbulent Flows

Stephen B. Pope

Cornell University

" CAMBRIDGE
@& P) UNIVERSITY PRESS



PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge, CB2 2RU, UK  http://www.cup.cam.ac.uk
40 West 20th Street, New York, NY 10011-4211, USA http://www.cup.org
10 Stamford Road, Oakleigh, Melbourne 3166, Australia
Ruiz de Alarcon 13, 28014 Madrid, Spain

(© Stephen B. Pope 2000

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2000
Printed in the United Kingdom at the University Press, Cambridge
Typeface Times 11/14pt  System IATEX [UPH]
A catalogue record of this book is available from the British Library

Library of Congress Cataloging in Publication data
Pope, S. B.
Turbulent flows / S. B. Pope.
p. cm.
ISBN 0 521 59125 2 (he.)—ISBN 0 521 59886 9 (pbk.)
1. Turbulence. I. Title.
QA913.P64 2000
532'.0527-dc21  99-044583 CIP

ISBN 0 521 59125 2 hardback
ISBN 0 521 59886 9 paperback



Turbulent Flows

This a graduate text on turbulent flows, an important topic in fluid dynamics.
It is up to date, comprehensive, designed for teaching, and based on a course
taught by the author at Cornell University for a number of years.

The book consists of two parts followed by a number of appendices.

~Part I provides a general introduction to turbulent flows, how they behave,
how they can be described quantitatively, and the fundamental physical
processes involved. The topics covered include: the Navier-Stokes equations;
the statistical representation of turbulent fields; mean-flow equations; the
behavior of simple free shear and wall-bounded flows; the energy cascade;
turbulence spectra; and the Kolmogorov hypotheses. Part II is concerned
with various approaches for modelling or simulating turbulent flows. The
approaches described are: direct numerical simulation (DNS); turbulent-
viscosity models (e.g., the k—¢ model); Reynolds-stress models; probability-
density-function (PDF) methods; and large-eddy simulation (LES). There
are numerous appendixes in which the necessary mathematical techniques
are presented.

This book is primarily intended as a graduate-level text in turbulent flows
for engineering students, but it may also be valuable to students in applied
mathematics, physics, oceanography, and atmospheric sciences, as well as
researchers, and practicing engineers.

STEPHEN B. PoPE is the Sibley College Professor in the Sibley School of
Mechanical and Aerospace Engineering at Cornell University. Over the past
25 years he has performed research on turbulent flows and turbulent com-
bustion, covering a broad range of approaches. He pioneered the application
of PDF methods to turbulent flows; and his work on DNS won First Prize
in the 1990 IBM Supercomputing Competition. Prior to joining Cornell
University in 1982, Pope held positions at the Massachussetts Institute of
Technology, the California Institute of Technology and Imperial College,
London, from which he received his PhD and DSc. He is a Fellow of the
American Physical Society, Division of Fluid Dynamics, an Overseas Fellow
of Churchill College, Cambridge, and holds a visiting appointment at Delft
University of Technology as J.M. Burgers Center Professor. He is a member
of the editorial boards of several journals, including Physics of Fluids and
Flow, Turbulence and Combustion.
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Preface

This book is primarily intended as a graduate text on turbulent flows for
engineering students, but it may also be valuable to students in atmospheric
sciences, applied mathematics, and physics, as well as to researchers and
practicing engineers.

The principal questions addressed are the following.

(i) How do turbulent flows behave?
(i) How can they be described quantitatively?
(iii) What are the fundamental physical processes involved?
(iv) How can equations be constructed to simulate or model the behavior
of turbulent flows?

In 1972 Tennekes and Lumley produced a textbook that admirably ad-
dresses the first three of these questions. In the intervening years, due in
part to advances in computing, great strides have been made toward pro-
viding answers to the fourth question. Approaches such as Reynolds-stress
modelling, probability-density-function (PDF) methods, and large-eddy sim-
ulation (LES) have been developed that, to an extent, provide quantitative
models for turbulent flows. Accordingly, here (in Part II) an emphasis is
placed on understanding how model equations can be constructed to de-
scribe turbulent flows; and this objective provides focus to the first three
questions mentioned above (which are addressed in Part I). However, in
contrast to the book by Wilcox (1993), this text is not intended to be a
practical guide to turbulence modelling. Rather, it explains the concepts and
develops the mathematical tools that underlie a broad range of approaches.

There is a vast literature on turbulence and turbulent flows, with many
worthwhile questions addressed by many different approaches. In a one-
semester course, or in a book of reasonable length, it is possible to cover
only a fraction of the topics, and then with only a few of the possible
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approaches. The present selection of topics and approaches has evolved over
the 20 years I have been teaching graduate courses on turbulence at MIT
and Cornell. The emphasis on turbulent flows — rather than on the theory
of homogeneous turbulence — is appropriate to applications in engineering,
atmospheric sciences, and elsewhere. The emphasis on quantitative theories
and models is consistent with the scientific objective — of developing a
tractable, quantitatively accurate theory of the phenomenon — and is ideal for
providing a solid understanding of computational approaches to turbulent
flows, e.g., turbulence models and LES.

With the exceptions of LES and direct numerical simulation (DNS), the
theories and models presented stem from the statistical approach, pioneered
by Osborne Reynolds, G. I. Taylor, Prandtl, von Karman, and Kolmogorov.
A sizable fraction of the academic research work in the last 25 years has
emphasized a more deterministic viewpoint: for example experiments on
coherent structures, and models based on low-dimensional dynamical systems
(e.g., Holmes, Lumley, and Berkooz (1996)). At this stage, this alternative
approach has not led to a generally applicable quantitative model, neither
— for better or for worse — has it had a major impact on the statistical
approaches. Consequently, the deterministic viewpoint is neither emphasized
nor systematically presented.

The book consists of two parts followed by a number of appendices. Part
I provides a general introduction to turbulent flows, including the Navier—
Stokes equations, the statistical representation of turbulent fields, mean-flow
equations, the behavior of simple free-shear and wall-bounded flows, the
energy cascade, turbulence spectra, and the Kolmogorov hypotheses. In the
first five chapters, the focus is first on the mean velocity fields, and how they
are affected by the Reynolds stresses. The concept of ‘turbulent viscosity’ is
introduced with a thorough discussion of its deficiencies. The focus then shifts
to the turbulence itself, in particular to the production and dissipation of
turbulent kinetic energy. This sets the stage for a description (in Chapter 6) of
the energy cascade and the Kolmogorov hypotheses. The spectral description
of homogeneous turbulence in terms of Fourier modes in wavenumber space
is developed in some detail. This provides an alternative perspective on the
energy cascade; and it is also used in subsequent chapters in the descriptions
of DNS, LES, and rapid distortion theory (RDT).

Simple wall-bounded flows are described in Chapter 7, starting with the
mean velocity fields and proceeding to the Reynolds stresses. The exact
transport equations for the Reynolds stresses are introduced, and their
balances in turbulent boundary layers are examined.

The simulation and modelling approaches described in Part II are: DNS,
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turbulent viscosity models (e.g., the k—¢ model), Reynolds-stress models, PDF
methods, and LES. It is natural to consider DNS first (in Chapter 9) since it
is conceptually the most straightforward approach. However, its restriction
to simple, low-Reynolds-number flows motivates the consideration of other
approaches. The most widely used turbulence models are the turbulent-
viscosity models described in Chapter 10. Reynolds-stress models (Chapter
11) provide a more satisfactory connection to the physics of turbulence. The
Reynolds-stress balance equations can be obtained from the Navier—Stokes
equations, and the various contributions to this balance have been measured
in experiments and simulations. Rapid-distortion theory is introduced to
shed light on the effects that mean velocity gradients have on the Reynolds
stresses. In developing and presenting modelled Reynolds-stress equations,
the emphasis is on the fundamental concepts and principles, rather than on
the detailed forms of particular models.

Chapter 12 deals with PDF methods. The primary object of study is the
(one-point, one-time, Eulerian) joint probability density function (PDF) of
velocity. The first moments of this PDF are the mean velocities; the second
moments are the Reynolds stresses. For several reasons it is both natural
and advantageous to proceed from the Reynolds stress to the PDF level of
description: in the PDF equation, convection (by both mean and fluctuating
velocity) appears in closed form, and hence does not have to be modelled;
the effect of rapid distortions on turbulence can (in a limited sense) be treated
exactly; and PDF methods are becoming widely used for turbulent reactive
flows (e.g., turbulent combustion) because they are able to treat reaction
exactly — without modelling assumptions.

Essential ingredients in PDF methods are stochastic Lagrangian models,
such as the Langevin model for the velocity following a fluid particle. These
models are also described in the context of turbulent dispersion (where they
originated with G. L. Taylor’s 1921 classic paper).

The final chapter describes LES, in which the large-scale turbulent motions
are directly represented, while the effects of the smaller, subgrid-scale motions
are modelled. Many of the concepts and techniques developed in Chapters
9-12 find application in the modelling of the subgrid-scale processes.

I use this book in a one-semester course, taught to students who previously
have taken one or more graduate courses in fluid mechanics and applied
mathematics. For most students, there is a good deal of new material, but I
find that they can successfully master it, provided that it is clearly and fully
explained. Accordingly there are many appendixes that provide the necessary
development and explanation of mathematical techniques and results used
in the text. In my experience, it is best not to rely upon the students’ prior



XX Preface

knowledge of probability theory, and consequently the necessary material is
provided in the text (e.g., Sections 3.2-3.5).

For a less demanding pace, Parts I and II can be covered in two semesters
— there is ample material. Alternatively, if a coverage of modelling is not
required, Part 1 by itself provides a reasonably complete introduction to
turbulent flows.

Many of the exercises ask the reader to ‘show that ...,” and thereby intro-
duce additional results and observations. Consequently, it is recommended
that all the exercises be read, even if they are not performed. The book is
designed to be a self-contained text, but sufficient references are given to
provide an entry into the research literature.

However much care is taken in the preparation of a book of this nature,
it is inevitable that there will be errors in the first printing. A list of known
corrections is given at http://mae.cornell.edu/ pope/TurbulentFlows.
The reader is asked to report any further corrections to the author at
pope@mae.cornell.edu.

I am profoundly grateful to many people for their help in the prepa-
ration of this work. For their support and technical input I thank my
colleagues at Cornell, David Caughey, Sidney Leibovich, John Lumley, Di-
etmar Rempfer, and Zellman Warhaft. For their valuable suggestions based
on reading draft chapters, I am grateful to Peter Bradshaw, Paul Durbin,
Rodney Fox, Kemo Hanjali¢c, Charles Meneveau, Robert Moser, Blair Perot,
Ugo Piomelli, P. K. Yeung, and Norman Zabusky. Similarly, I am grateful
to the following Cornell graduates for their feedback on drafts of the book:
Bertrand Delarue, Thomas Dreeben, Matthew Overholt, Paul Van Slooten,
Jun Xu, Cem Albukrek, Dawn Chamberlain, Timothy Fisher, Laurent Myd-
larski, Gad Reinhorn, Shankar Subramaniam, and Walter Welton. The first
five mentioned are also thanked for their assistance in producing the figures.
Most of the typescript was prepared by June Meyermann, whose patience,
accuracy, and enthusiasm are greatly appreciated. The accuracy of the bib-
liography has been much improved by the careful checking performed by
Sarah Pope. Above all, I wish to thank my wife, Linda, for her patience,
support, and encouragement during this project and over the years.



Nomenclature

The notation used is given here in the following order: upper-case Roman,
lower-case Roman, upper-case Greek, lower-case Greek, superscripts, sub-
scripts, symbols, and abbreviations. Then the symbols O( ), o( ), and ~ that
are used to denote the order of a quantity are explained.

Upper-case Roman

A" van Driest constant (Eq. (7.145))

A control surface bounding V

B log-law constant (Eq. (7.43))

B, constant in the velocity-defect law (Eq. (7.50))

B, Loitsyanskii integral (Eq. (6.92))

B, log-law constant for fully-rough walls (Eq. (7.120))

B(s/d,) log-law constant for rough walls (Eq. (7.121))

C Kolmogorov constant related to E(k) (Eq. (6.16))

Cy coefficient in the Langevin equation (Egs. (12.26) and
(12.100))

C Kolmogorov constant related to E;;(x;) (Eq. (6.228))

(o Kolmogorov constant related to Ex(x;) (Eq. (6.231))

C, Kolmogorov constant related to D;; (Eq. (6.30))

G, constant in the IP model (Eq. (11.129))

Cs constant in the model equation for w* (Eq. (12.194))

Cg LES dissipation coefficient (Eq. (13.285))

Cy skin-friction coefficient (z,,/(1pU?))

Cr Rotta constant (Eq. (11.24)) —

Cs Smagorinsky coefficient (Eq. (13.128))

C, constant in Reynolds-stress transport models

(Eq. (11.147))
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Nomenclature

Cints Cu
Co

Ci;

D

D;;

Dy (s)
DLL
DLLL

DNN
D,(r)

F(V)
Fp(y/d)
].—

ijl

constant in the model equation for ¢ (Eq. (11.150))
constants in the model equation for ¢ (Eq. (10.53))
turbulent-viscosity constant in the k—& model

(Eq. (10.47))

LES eddy-viscosity coefficient (Eq. (13.286))

constant in the IEM mixing model (Eq. (12.326))
constant in the definition of Q (Eq. (12.193))
constants in the model equation for w (Eq. (10.93))
Kolmogorov constant (Eq. (12.96))

cross stress (Eq. (13.101))

pipe diameter

second-order velocity structure function (Eq. (6.23))
second-order Lagrangian structure function (Eq. (12.95))
longitudinal second-order velocity structure function
longitudinal third-order velocity structure function
(Eq. (6.86))

transverse second-order velocity structure function
nth-order longitudinal velocity structure function
(Eq. (6.304))

substantial derivative (¢/dt + U - V)

mean substantial derivative (¢/dt + (U) - V)
substantial derivative based on filtered velocity
Cartesian coordinate system with basis vectors e;
Cartesian coordinate system with basis vectors g;
kinetic energy (3U - U)

kinetic energy of the mean flow (3(U) - (U))

kinetic energy flow rate of the mean flow
energy-spectrum function (Eq. (3.166))
one-dimensional energy spectrum (Eq. (6.206))
energy-spectrum function of filtered velocity (Eq. (13.62))
frequency spectrum (defined for positive frequencies,
Eq. (3.140))

frequency spectrum (defined for positive and negative
frequencies, Eq. (E.31))

determinant of the normalized Reynolds stress

(Eq. (11.52))

cumulative distribution function (CDF) of U (Eq. (3.7))
velocity-defect law (Eq. (7.46))

Fourier transform (Eq. (D.1))

inverse Fourier transform (Eq. (D.2))
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Fourier integral operator (Eq. (6.116))
coefficient in the GLM (Egs. (12.26) and (12.110))
LES filter function

LES filter transfer function

shape factor (6" /0)

Heaviside function (Eq. (C.33))

identity matrix

indicator function for intermittency (Eq. (5.299))
principal invariants of the second-order tensor s
(Egs. (B.31)-(B.33))

kurtosis of the longitudinal velocity derivative
kurtosis of ¢

Knudsen number

modified Bessel function of the second kind
lengthscale (k%/s)

lengthscale (1 /¢)

longitudinal integral lengthscale (Eq. (3.161))
lateral integral lengthscale (Eq. (6.48))
characteristic lengthscale of the flow

length of side of cube in physical space

resolved stress (Eq. (13.252))

Leonard stress (Eq. (13.100))

momentum flow rate of the mean flow

scaled composite rate-of-strain tensor (Eq. (13.255))

normalized nth moment of the longitudinal velocity
derivative (Eq. (6.303))

Mach number

normal distribution with mean u and variance ¢’
quantity of big order h

quantity of little order h

pressure (Eq. (2.32))

probability of event A

particle pressure (Eq. (12.225))

projection tensor (Eq. (6.133))

production: rate of production of turbulent kinetic
energy (Eq. (5.133))

rate of production of Reynolds stress (Eq. (7.179))

rate of production of residual kinetic energy
(Eq. (13.123))
rate of production of scalar variance (Eq. (5.282))
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R pipe radius

R(s) autocovariance (Eq. (3.134))

R;j(r,x;t) two-point velocity correlation (Eq. (3.160))

R,j(x) Fourier coefficient of two-point velocity correlation
(Eq. (6.152))

Rt turbulent Reynolds number (Eq. (5.85))

R; Taylor-scale Reynolds number (Eq. (6.63))

Re Reynolds number

Re Reynolds number (2U6 /v)

Rey Reynolds number (Uyd/v)

Re; turbulence Reynolds number (k/2L/v = k?/(ev))

Rer turbulence Reynolds number (u/Ly;/v)

Re, Reynolds number (Uyx/v)

Res Reynolds number (Uyd /v)

Re;- Reynolds number (Uyo"/v)

Rey Reynolds number (Uy6/v)

Re, Reynolds number based on friction velocity (u.0/v)

Rij pressure-rate-of-strain tensor (Eq. (7.187))

R SGS Reynolds stress (Eq. (13.102))

Ry redistribution term (anisotropic part of IT;;, Eq. (11.6))

Rii(v, x, 1) conditional pressure—rate-of-strain tensor (Eq. (12.20))

Rff’ redistribution term used in elliptic-relaxation model
(Eq. (11.198))

R rapid pressure-rate-of-strain tensor (Eq. (11.13))

R,.j.) slow pressure-rate-of-strain tensor

S spreading rate of a free shear flow

S velocity-derivative skewness (Eq. (6.85))

S(¢) chemical source term (Eq. (12.321))

S’ velocity structure function skewness (Eq. (6.89))

Sij rate-of-strain tensor (%(6 U;/0x;+ dU;/0x;))

Sij mean rate-of-strain tensor (3(0(U;)/dx; + d(U,)/0x;))

:S’\f,- normalized mean rate-of-strain tensor ((k/¢)S;;)

Sij filtered rate-of-strain tensor (Eq. (13.73))

Sij doubly filtered rate-of-strain tensor

Si(r, t) two-point triple velocity correlation (Eq. (6.72))

Se skewness of ¢

So mean source of turbulence frequency (Eq. (12.184))

S characteristic mean strain rate (25;;5;)? (S = 8(U;)/dx,

in simple shear flow)
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filtered rate-of-strain invariant (25;S;)?

doubly filtered rate-of-strain invariant (2§,-,—S ij)%
sphere in wavenumber space of radius x

principal mean strain rate: largest eigenvalue of S;
time interval

turbulent timescale defined by Eq. (11.163)

rate of energy transfer to Fourier mode of wavenumber
k from other modes (Eq. 6.162)

flux of Reynolds stress (Eq. (7.195))

flux of Reynolds stress due to fluctuating pressure
(Eq. (7.193))

isotropic flux of Reynolds stress due to fluctuating
pressure (Eq. (11.140))

flux of Reynolds stress due to turbulent convection
((uewiu;))

diffusive flux of Reynolds stress (Eq. (7.196))
Lagrangian integral timescale (Eq. (12.93))

rate of transfer of energy from eddies larger than /¢ to
those smaller than ¢

rate of transfer of energy from large eddies to small
eddies

rate of transfer of energy into the dissipation range
(£ < £py) from larger scales

random process

Eulerian velocity

x component of velocity

x component of velocity

bulk velocity in channel (Eq. (7.3)) and pipe flow
(Eq. (7.94))

fluid-particle velocity

model for the fluid-particle velocity

filtered (resolved) velocity field

mean centerline velocity in channel and pipe flow
mean centerline velocity in a jet

freestream velocity

characteristic convective velocity

jet-nozzle velocity

velocity of high-speed stream in a mixing layer
velocity of low-speed stream in a mixing layer
characteristic velocity difference
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U characteristic velocity scale of the flow

14 sample space variable corresponding to U

V sample space variable corresponding to velocity U

V(x,r,0) r component of velocity

V(x,y,z2) y component of velocity

1% control volume in physical space bounded by A

W (t) Wiener process

W{(t) vector-valued Wiener process

W(x,r,0) 0 component of velocity

W(x,y,z) z component of velocity

X*(t,Y) fluid-particle position: position at time ¢ of fluid particle

that is at Y at the reference time ¢,

X'(1) model for fluid-particle position (Eq. (12.108))

Y fluid particle position at the reference time ¢,
Lower-case Roman

a drift coefficient of a diffusion process (Eq. (J.27))

aj anisotropic Reynolds stresses ((uu;) — kd;;)

ai; direction cosines (Eq. (A.11))

ag LES filter constant (Eq. (13.77))

b’ diffusion coefficient of a diffusion process (Eq. (J.27))

bi; normalized Reynolds-stress anisotropy (a;;/(2k))

cr skin-friction coefficient (t,,/(3pUg))

Cs Smagorinsky coefficient (Eq. (13.253))

d jet-nozzle diameter

e(t) unit wavevector (Eq. (11.84))

e unit vector in the i-coordinate direction

f friction factor (Eq. (7.97))

f, f self-similar mean axial velocity profile

f(r,t) longitudinal velocity autocorrelation function (Eq. (6.45))

f(v) probability density function (PDF) of U (Eq. (3.14))

f(V;x,t) Eulerian PDF of velocity (Eq. (3.153))

f'(V;x,1) fine-grained Eulerian PDF of velocity (Eq. (H.1))

f (V;x,t) modelled Eulerian PDF of velocity (Eq. (12.116))

"(V|x;t) conditional PDF of particle velocity (Eq. (12.205))

f(V;x,t) filtered density function (Eq. (13.287))

f(V.,0;x,1) joint PDF of velocity and turbulence frequency

f( V.;x,t) velocity—composition joint PDF

21(V2| V1)

PDF of U, conditional on U, = V; (Eq. (3.95))
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fLV,x;t|Y) Lagrangian velocity—position joint PDF (Eq. (12.76))

fi(V,x;t) joint PDF of U*(t) and X" (¢)

n(p:x,t) non-turbulent conditional PDF of scalar ¢(x, 1)

fr(y;x, 1) turbulent conditional PDF of scalar ¢(x,1)

fuy™) law of the wall (Eq. (7.37))

fx(x:;t|Y) PDF of fluid-particle position

fx(x:1) PDF of X (t)

Ju damping function in k—¢ model (Eq. (11.155))

folyp:x, 1) PDF of scalar ¢(x,t)

foll;x,1) PDF of turbulence frequency

g2, 8 self-similar shear-stress profile in a free shear flow

g gravitational acceleration

g gravitational force per unit mass

g(r,t) transverse velocity autocorrelation function (Eq. (6.45))

g(v;x,t) Eulerian PDF of the fluctuating velocity

h, h self-similar mean lateral velocity profile

h grid spacing

k turbulent kinetic energy (5 (u - u))

k(r,t) longitudinal two-point triple correlation (Eq. (6.73))

k. residual kinetic energy (Eq. (13.92))

Rt 0 turbulent kinetic energy in the wavenumber range
(Kaa Kb)

l lengthscale defined as vr/u/

14 lengthscale

14 characteristic eddy size

4 lengthscale of the largest eddies

lpy demarcation lengthscale between the dissipation range
(¢ < ¢p;) and the inertial subrange (¢ > /p;)

lg; demarcation lengthscale between the energy-containing
range of eddies (¢ > fg;) and smaller eddies (¢ < fg;)

U mixing length (Eq. (7.91))

o mixing length in wall units (¢,,/9,)

s Smagorinsky lengthscale (Eq. (13.128))

ly(x) distance between x and the nearest solid surface

H(x) mass flow rate of the mean flow

n unit normal vector

o(h) small order h (Eq. (J.34))

p exponent in power-law spectrum (Eq. (G.5))

p(x,t) modified pressure

p(x,1) fluctuating (modified) pressure
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Nomenclature

p"(x, 1)
P (x, 1)
PP (x,1)
po(x)
pw(x)

Yo.1(x)

Vi2(x)
Yp

harmonic pressure (Eq. (2.49))

rapid pressure (Eq. (11.11))

slow pressure (Eq. (11.12))

freestream pressure

wall pressure

exponent in power-law structure function (Eq. (G.6))
radial coordinate

half-width of jet or wake

time interval

lengthscale of wall roughness

fluctuating rate-of-strain tensor (%(6ui/6xj + du;/0x;))
time

x component of fluctuating velocity
characteristic velocity of an eddy of size ¢
fluctuating velocity

Fourier coefficient of velocity (Eq. (6.102))

r.m.s. velocity

fluctuating component of particle velocity (Eq. (12.207))
mean velocity normalized by the friction velocity
residual (SGS) velocity field (Eq. (13.3))

r.m.s. axial velocity

velocity scale of the largest eddies

propagation velocity of the viscous superlayer
Kolmogorov velocity (Eq. (5.151))

friction velocity (1/ty/v)

y or r component of fluctuating velocity

sample space variable corresponding to u

z or O component of fluctuating velocity

law of the wake function (Eq. (7.149))

position

Cartesian or polar cylindrical coordinate

virtual origin

Cartesian coordinate

distance from the wall normalized by the viscous
lengthscale, o,

cross-stream location in mixing layer (also yyo(x) etc.,
see Eq. (5.203))

half-width of jet or wake

distance from the wall at which wall functions are
applied



