T

‘m};% B -] Hﬁ 1 | EE S

LEH HALL

G—REIE

(SR3ZhR)

Unified Software
Engineering

with ya/a/a/

Georges G. Merx
Ronald J. Norman

MW T AR 4

China Machine Press

G—i IR

(SR3ZhR)

¥ ified Software.
~ Engineering with Java

Georges G. Merx
ERXEFEZR

£ Ronald J. Norman
BT ERNER

English reprint edition copyright © 2008 by Pearson Education Asia Limited and China
Machine Press.)

Original English language title: Unified Software Engineering with Java (ISBN 0-13-
047376-6) by Georges G. Merx and Ronald J. Norman, Copyright © 2007.

All rights reserved.

Published by arrangement with the original publisher,'Pearson Education, Inc., publishing
as Prentice Hall.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan,
Hong Kong SAR and Macau SAR).-

A5 H LR ENAR fh Pearson Education Asia Ltd 28U Tk AR K HIR . RBHIK
HBHEEA, ARUAEATRERZDREBHE. v

R THREARLMESEAN (AREFEEE, RITEINTERERNTEESEHRKX) #HE
k57,

&5 % Pearson Education (¥AHE MRER) BEHWRE, THREETBHE.

MREE, RBUBR.
FHEEmE RHRARPEELR

ERRFEIZE. B¥. 01-2007-4208

EHBERRB (CIP) ¥iE v
Gi— kTR (FE3CHR)/ (%) BTl (Merx, G. G.) %% —b30: HURT L HAREE, 2008.1
(BHFRRBE)

F 43X Unified Software Engineering with Java
ISBN 978-7-111-23164-6

1.4 0.8 D 8¥%E$HFE-%EX V. TP311.52
A B S RCIPHIR T (2007) $52056972

PUB Tk AR A GemmBREEH EAH22% MBS 100037)
HiEmE: BiRE

L F R EERIA RA B VR FrEBERRRITHRAT
20084%1 A 55 1R 58 1IK EN Rl

170mm x 242mm + 39.5E)15k

RS, ISBN 978-7-111-23164-6

EMr: 69.005T
FLBaAS, mAEBT. B, ST, hAFLRITHiRgR
ARk (010) 68326294

N “

BhREBNS

XEEMLE, FiRRKOBZBME P ERNERE, EHFEREAR
FHER A SIS T 28R MmE, hIERXHENESE, FXRERGREARREN
ANtEERAARKEN, HONE, EfLCHHEES, ZERNS LR 58T RS
BEMEAS, HENFRHRITF SR ILALS RN SR MBFER &A%, HLm™
HERSHREEE, TR THARTER, SRETHEAROEE, BEFEERANTE,
XBAFEME, AN EHIASE4EANRE TR .

R, ER2REEAKRENEDT, REMTELRBERE, XEkA4R
Tk B&REY)., XXM UBENBETRMLARFHERAIE, BRI, mELBEMrE
REHERKR LDARERE, ARERSBEARRRM RS, M READHIR
T, X2EFXSERELTEBZRRGLHERRENSABMH DA T L ERE
L2k, Hit, sEE—#EIMIF I EILEM X RE T REILEET F LR BREBRR
FIHEZIERH, bR E5HF#R,. BIREEMHR —RKENLHZE,

LB T R EE X EBARARKREREIRE “HREAEFTRS. B
19984 FF 4R, 4LF N RIghHs TIEE SURAE Tk, BIFESMEFEM L. 2dJLEN
AE%Eh, FA15Prentice Hall, Addison-Wesley, McGraw-Hill, Morgan Kaufmann
SHRELBRATELTRFMAEXSR, NEMNIANEE R B B %L H
Tanenbaum, Stroustrup, Kernighan, Jim Gray% ki xI—#28ER, L “HE&
PLBHEAS” HEFRHAR, SH%E%], MRAER, REALENHE, WEAR
TXEMNBRY AR,

“HEILBHENS” R TEMETENINMEENM D RE), BNHEFRFN
REETHEEBES, SRS EHAE T BEmERHNIE, fmABEE LA
LURFEHEMETEOEE, AN ERARBHPIESERF. €4, “THHEHLFE
A" LR TIE2604 Ffp, XEREEREFRLTREVOM, HEFLE
BRAANERBEM IS EBE, DR 5RBITT TRCAER,

B & F R BRI S E EMBM L ERBRL, BEFFHEIMNEBEMHOE
KFR S A—ANFOH B, Ak, CEAFBMASIHBMBIDE, B “HEN
BHENE" 250, SHENREA, MBmArRY “@BFIRBE". H TRIEXMH
ENBRREYE, RN T BiFioh R MEMITIRS, REAFTRETHEFRE
Be. dbmiksf. EERY. BPRBAY. RAEAK%, LEGEKRE, BRKE, W
LR, hERHERY:, MARETLAY, ARLEKRE. FEARKE, LER=

iv

MRKZE, LREBHR A%, filik, MEEETARSY, MINKE, #idbIk, &
HEXREBERXR2MFNEF O EENE AKRFMEFYAETENN AN SBNE L
FEAKR “FREFBRAY”, ARMNBEEFEERMHRIEE.

XHENE R R HEFHRHERIMNEEMNSE, ARNSEBITELRAE
XEIVHIBFEESITERN., EbiEL 8652 HM. 1. T., Stanford, U.C. Berkeley,
C. M. U FHRLMKEEH, HMURETEFRIT. 8BS0, #IER%E. R
Pk RS, BBE. HiFFRE. REFETRE. BEE. A5, E8EEEEN
KEFEIL VLB IEHEORE, MASAREA—FNHBESRIFEZF.
FOFS=THMNAE., AWCHLERNVILEHREREMA, 15X %5 2@ E 26
KUERIREIZTF, EELBETELRIENERPHEEZMAE,

PUSITES . HMBH . —KHEE. MHROER. RANEE, IEERE
BMNWEBE TREMRIE, ERMNOBRERERE, MRBPBRLELBIEET
X—#4% BARMEERE ., EMOBRRRRINMNESRFSHRA. EEATIULE
IHFNRE X AT TIER WIS THIE, BRIBKABEWT

L -FHlfk: hzjsj@hzbook.com
BEREIE: (010) 68995264

BeAMAE: bR E Eh EEHELS
BB gmAG: 100037

EREBEERE

(Bl & £)
EANE) LR LEMH XEK
2 2 WEF O Rk RXHE
FihE E2WHR FEY AR
I 7 2 A% MeaH Aait
B 0 EWE & W
#18 R IR BEHR -2
i 42 fo AEHSE AL
.

4
3%

My wife Jin always supports and encourages my projects—even
one as major as writing this book—although they take away from
our time together. I am deeply grateful for this irrefutable evidence
of true love.

I hope that my efforts will serve to provide some inspiration
for my daughter London to find her own path to success, wherever
that path may lead her.

A good portion of this work was completed at the Fenton
Place Starbucks in San Diego. 1 express my gratitude to the staff
there, and to Starbucks as one of the great American companies, for
creating an environment where those of us with short attention
spans can be productive.

All the people at Prentice Hall—especially our editor, Tracy
Dunkelberger, and her indefatiguable assistant, Christianna Lee—
with whom I have had the privilege to work are immensely support-
ive, helpful, and competent: my appreciation is heartfelt. A special
note of appreciation to Irwin Zucker, our production editor, for
getting us through the production phase of this project with patience
and much good will.

Finally, the indefatigable encouragement and contributions of
my co-author, Ron, have been indispensable ingredients to making
this project workable.

Georges G. Merx

There are so many to dedicate this book to that I cannot name them
individually. Literally hundreds of software engineers (generic title)
and academics/researchers around the globe have contributed to
making me the professional I am today through the many
publications, conferences, seminars, and workshops that [have
either physically or virtually attended or led. Their influence has
been profound in my life, and I am deeply grateful for the
experiences and interaction with each of these professional women
and men.

1 also dedicate this book to those who will advance their acad-
emic and/or professional knowledge through the use of this book. It
is truly a privilege to contribute something back to you, since so
many individuals have profoundly influenced me.

Thank you, Georges, for allowing me to take this book journey
with you—you are a gifted writer and seasoned professional/academic.

Finally, thank you to my life-partner, wife, and best friend:
Caralie.

Ronald J. Norman

Preface

Creating commercial software requires excellent knowledge and skills in a number of
areas, not just programming language syntax and semantics. We have therefore written a
book that teaches the fundamentals of Java programming in the context of object-orient-
ed software engineering and a Unified-Process-based software development methodolo-
gy. Today’s programmers need to be software engineers who knw their languages and
tools, certainly, but who also understand object-oriented analysis and design, software
quality asurance, and software project management. In fact, the best antidote to the
outsourcing of software development jobs overseas is to elevate the profession above the
specialist tasks of code development. Software engineers need to have the skills to deliv-
er quality software on time, on budget, and according to stakeholder requirements. Our
book puts the study of Java in this meaningful, valuable context.

Audience

College students with a previous course in programming or software engineering
learning their first or second computer programming language are the primary audi-
ence for this textbook. Some previous exposure to principles of information systems
and computer science is desirable, but not required. Other likely readers are software
development professionals who are looking for a methodical approach to learning
object-oriented software development using Java, especially those who only have ex-
perience in procedural programming.

Course Definition

This book is recommended for use in information systems or computer science courses
at the college level and targets students pursuing an interest in computer science, in-
formation systems, or software engineering. In addition to delivering solid program-
ming language instruction, it lays a broad foundation in object-oriented methodology,
based on best practices and proven principles developed by Grady Booch, Jim Rum-
baugh, Ivar Jacobson, Peter Coad, Barry Boehm, Kent Beck, and other recognized
software engineering thought leaders. Based on a complete, object-oriented life-cycle
view of the software design and development process, software engineering as defined

viii

and described in this book embraces the use of Java for the development of robust,
commercially viable, and eminently usable software solutions.)

From initial concept to deployment, all aspects of software engineering project
design, development, and management will accompany the students’ learning experi-
ence. They will understand how rigorous iteration-based requirements management
(using stakeholder and use case analysis), conceptual and physical design (using the
Unified Modeling Language and Design Patterns), component-based implementation,
and well-planned deployment contribute to transitioning software development from
an art form to an engineering discipline.

For professors and instructors, this book and accompanying website constitute
solid teaching aids, providing not only Java language training, but also work process-
based instruction, including a clear and practical introduction to object-oriented design
and development. Written with the understanding that the introduction to software en-
gineering and Java can be a daunting experience for many inexperienced readers, this
book delivers its instructional content with a strong emphasis on illustrative examples
and a firm grounding in real-life applications.

Courses on Java and object-oriented programming are mainstay offerings on
many college campuses. This book secks to support and deepen the interest of stu-
dents, teachers and administrators in an area of computer science critical to the devel-
opment of core skills sought after by the high-technology industry. Courses built to
leverage the contents of this book will help students advance their understanding of
object-oriented software engineering using Java to a level where they can either move
on to more advanced course work, or apply their new, practical knowledge in entry-
level work positions.

Another Java Book?

The idea for this book arose originally from my search (Merx) for appropriate text-
books for use in my own Java courses. It appeared that available textbooks either focus
on Java syntax and structure at the expense of methodology and process, or emphasize
“analysis and design,” while lacking the practical context of a modern object-oriented
programming language and toolset. Both of us have extensive experience both in acade-
mia (SDSU, UCSD, Mesa College, University of Phoenix, National University, Grossmont
College, and University of Maryland University College) and in business (Borland, To-
getherSoft, NCR,AT&T, QUALCOMM, ICL/Fujitsu, etc.). This background convinces us
that as educators we need to do better in training our students for the multi-disciplinary
effort required to develop valuable, high-quality software that solves difficult problems
in a world-class fashion.

While many excellent text and reference books on Java are available, most are
lacking key features deemed essential for practical instruction of effective software en-
gineering using Java. From our perspective, a key area of progress in software develop-
ment is the recasting of professional programming as a software engineering discipline,
with its implications of reusability, quality controlled rigor, focus on architecture and
process, and project management. Software engineering, as described and standard-
ized in the Carnegie-Mellon University Software Engineering Institute’s Capability

ix

Maturity Model, for example, promotes a life-cycle approach to software development
projects. The unique features of this book focus on programming language instruction
within the framework of a solid, comprehensive, object-oriented methodology, appro-
priate for implementation in real-world commercial software development projects by
inexperienced software engineers.

Both of us have extensive commercial hands-on programming, teaching, and
managerial experience in software design and development, architecture, tools, imple-
mentation, and project management. Our understanding of industry needs, combined
with our teaching experience, have led to this text, which integrates important instruc-
tional topics otherwise only available from multiple, unrelated textbooks.

GEORGES G. MERX AND RONALD J. NORMAN

€ woyaary | 7 wopvaan | | uopnaay |

NV1d ONLLEIIN VI TVOINHOEAL

NOLLVINIWNOO0A

INTAWIOVNVN NOLLVANOLINOD

NOLLVAI'TYA ANV SNOLLOHdSNI

INFWIOVNVI LOAr0odd

saundiosi(q sunioddng

AONVNILNIVIN
ANV L40ddNS

«d

SISATVNV

WO JO [9A9]

LdHONOD
soundiosi(y

spoday
JouUBUUIEIA
pue a1epdn
UL
SpoYIaN i
juowdiys SBuey)
uoneuAWNd0 -
SagensIwpY EuE.noE da
pue 195} 192
suoday suodoy
uonesynIa) WL
vO PRt
woday uonesyadg
1S3 1891,
uonesdaluf uonesdajug
wodoy suodoy uoneoyads
1S9 uonoadsug uonel
nun = -uawardwy
ug]qd Judwadeury
ueld uoneindyuo) uonesyads uonedyads
uoneuIWNO(uoneoyads 189 Wun udisaq
Jouenssy Aend
SwI0g
uo ad
Peqpd .u:oﬂ_mn_ n_cwﬁw_w._w__..om_
laproyaxyers . :
uelq ssouisng
spejiay uoneEIWNO(

-~

1 uonwaasy _m_._o:m._ﬁ

auyryauny

[OPOJA SS2001d Payiu) papualxy

Contents

Preface

1 Introduction to Java in the Context of Software Engineering

1.1
1.2

1.3

1.4
1.5

1.6

1.7

1.8

Getting Acquainted 1

What Is Java Programming? 1

1.21 What is Software Engineering? 2
Learning Objectives 6

131 Learning Layout 7

1.3.2 Learning Connections 8

Executive Summary 9

Learning Modules 10

1.5.1 Concepts 10

1.5.2 Unified Process-Based Methodology Overview
1.5.3 Position in Process 14

154 Domain Model 17

1.5.5 Scenarios 17

1.5.6 The Unified Modeling Language 21
The Java Programming Language 67

1.6.1 Historical Perspective on Java 21
1.6.2 Java Basics 23

Relationships 28

1.7.1 Caveats and Complexities 30
Example: The Voting Program 30

1.8.1 Project (System) Vision 31

1.8.2 Project Description 31

1.83 Stakeholder Analysis 32

1.84 Customer Profile 32

1.8.5 Market Analysis 32

1.8.6 Risk Analysis 33

1.8.7 Business Use Case Model and Use Cases 33
1.8.8 Competitive Analysis 36

1.8.9 Distribution Plan 41

12

vii

Xii

19

1.10
1.11
1.12
113
1.14
1.15

1.16

1.8.10 Financial Plan 42

1.8.11 High-Level Project Plan 43

1.812 Recommendations 43

Ongoing Case Study 43

191 Introduction 43

1.9.2 Initial Concept 44

1.9.3 Business Justification 45

1.94 Stakeholder Analysis 46

1.95 Case Assignments 46

Resources: Connections ® People ¢ Companies 46
Summary and Recommendations 47

Review Questions 47

Glossary — Terminology — Concepts 48
Exercises 50

Setting up a Java Development Environment 50
1.15.1 Versions of Java 51

1.152 Class and Classpath Setup 51

Java Programming Exercises 51

2 Experimenting with Classes and Objects

2.1

2.2
2.3

24
25
2.6
2.7
2.8

29
2.10

2.11
212
213

Learning Objectives 54

211 Learning Layout 55

2.1.2 Learning Connections 56

Executive Summary 57

Learning Modules 58

2341 Concepts 58

232 Position in Process 73

The Purpose of Object Orientation in Software Engineering
Problems with Procedural Programming 75

How O-O Solves Software Development Problems 76
Understanding Object Orientation 77
Object-Orientation in Java 79

281 Java Classes and Objects 79

Architecture and Class Hierarchy 82

Economies of Reuse 82

2101 Quality 83

2.10.2 Consistency 83

2.10.3 Implement Once 83

2,104 Flexibility 83

Use Case Models and Classes 84

“Real-Life” Variations 85

Translating Generic Class Descriptions into Java Classes 85

74

52

2.14
2.15
2.16

217

2.18

2.19
2.20
221
2.22
223

3 The Structure and Syntax of Java

31

3.2
33

34

35
3.6
37

Unified Modeling Language Perspective 86
A Simple Java Program: The Voting Program Prototype 86
Relationships 87

2.16.1

Caveats and Complexities 87

Example: The Voting Program 88

2171
217.2
2173
2174

The Domain Model 88

Requirements Specification Outline 89
Deliverables 103

Other Requirements 103

Ongoing Case Study 104

2.18.1
2.18.2
2183
2.184
2.18.5

2.18.6
2.18.7

2.18.8
2.189

Market Analysis 104

Risk Management 104

Business Use Case Model and Business Use Cases 105

Competitive Analysis 105

Distribution Plan (Pricing, Packaging, Promotion, Positioning)
105

Financial Plan (Revenue Plan, Budget, Cash Flow Analysis,

ROI Analysis) 106

High-Level Project Plan 106

Recommendations 106

Case Assignments 106

Resources: Connections ® People ® Companies 107
Summary and Recommendations 107

Review Questions 107

Glossary — Terminology - Concepts 108

Exercises

108

109

Learning Objectives 111

3.11
312

Learning Layout 111
Learning Connections 111

Executive Summary 112
Learning a Programming Language 114

331
3.3.2
333

For the Novice 114
For the Experienced Software Engineer 119
Similarities to Other O-O Programming Languages 120

Learning Modules 122

341

Concepts 122

The Java Family of Classes and Packages 143
Third-Party Components 144
Software Quality Assurance 144

3.8 Position in Process 146
38.1 Design Model 147
382 Component Design 147
383 Class Hierarchy 147
3.84 System Architecture 148
385 Prototyping 150
39 Relationships 150
39.1 Caveats and Complexities 152
3.10 Example: The Voting Program 152
3.10.1 Component Design 152
3.10.2 Class Hierarchy 153
3.10.3 System Architecture 153
3.104 Prototype 153
3.10.5 Design Specification, Quality Assurance Specification, and
Configuration Management Plan 153
311 Ongoing Case Study 155
3.12 Resources: Connections ® People ¢ Companies 158
3.13 Summary and Recommendations 158
3.14 Review Questions 159
3.15 Glossary — Terminology — Concepts 159
3.16 Exercises 159
3.17 Optional Chapter Addendum: LibraryManager, an Application
Example 160
3.171 Program Code 161
3.17.2 Analysis 179

4 Design and Development of Java Applications 183

4.1 Learning Objectives 185
411 Software Engineering Methodology 186
4.1.2 Java Syntax and Structure 187
413 Object Orientation 190
4.14 Software Quality Assurance 191
4.15 Attitude and Motivation 192
4.1.6 Learning Layout 193
4.1.7 Learning Connections 193

42 Executive Summary 193

43 Learning Modules 196
4.3.1 Software Engineering History 196
432 Process Models 205
433 “Object Thinking” 209
434 Object Orientation 210
4.3.5 Java Control Structures 214

4.4 Position in Process 227
441 Design Specification 227
442 Unit Test Specification 229
443 Quality Assurance Plan 229
444 Configuration Management Plan 230
445 Documentation Plan 230
4.5 Example: The Voting Program 231
451 Introduction 231
452 Functional Overview 234
453 System Architecture 235
454 Class Hierarchy 236
455 Component Definition and Design 238
456 Prototype Description and Evaluation 238
45.7 Environment 239
4.5.8 Supporting Disciplines 240
4.6 Ongoing Case Study 245
4.7 Resources: Connections ® People ® Companies 246
4.8 Summary and Recommendations 247
4.9 Review Questions 247
4.10 Glossary — Terminology — Concepts 247
4.11 Exercises 248
4.12 Optional Chapter Addendum: Pattern-Driven Design 248
4.12.1 Pattern Principle 1: High Cohesion 248
4.12.2 Pattern Principle 2: Low Coupling 249
4.123 Most Popular Patterns 249

5 Architecture-Driven Component Development 251

5.1 Learning Objectives 251
5.1.1 Revisiting System and Software Architecture 252
512 Java Component Interaction and Integration 255
513 Learning Layout 260
5.1.4 Learning Connections 260
5.2 Executive Summary 260
5.3 Learning Modules 262
5.3.1 Concepts 263
532 Architectural Perspectives 264
533 Developing Java Components 269
534 Java Class Interaction 276
535 Java Objects 278
5.3.6 Methods and Constructors 278
5.3.7 Polymorphism: Method Overloading 279

xvi

54

5.5

5.6

5.7
5.8
5.9
5.10
5.11

5.3.8 Polymorphism: Method Overriding 280
539 Inheritance: Extending Classes 280
5.3.10 Inheritance: Implementing Interfaces 280
5311 User Interface: An Introduction 281
5.3.12 User Input and User Input Validation 282
Position in Process 283

54.1 Component Implementation 284

542 Unit Testing 284

543 Build Management 285

Example: The Voting Program 287

551 Components 288

Ongoing Case Study 310

5.6.1 Some Notes on the Model Home Interior Design Business

311
Resources: Connections ¢ People ¢ Companies 312
Summary and Recommendations 312
Review Questions 312
Glossary — Terminology — Concepts 313
Exercises 313

6 Introduction to Distributed Computing Concepts

6.1

6.2

6.3

6.4

6.5

Learning Objectives 315

6.1.1 Creating Value 315

6.12 Agile Techniques 318

6.13 Learning Layout 319

6.1.4 Learning Connections 319

Executive Summary 320

Learning Modules 322

6.3.1 Concepts 322

6.3.2 Agile Methods and Rapid Application Development
6.3.3 Distributed Java Applications 325

6.3.4 Methodology, Tools, and Distributed Solutions 327
6.3.5 Information Persistence 331

Position in Process 333

6.4.1 Class and Object Integration 333

6.4.2 Package Integration 334

6.4.3 Subsystem Integration 335

6.4.4 System Integration 335

6.4.5 Integration Testing 335

Iterative Improvements 337

314

324

