Rails Cookbook (ZENR)

3 ®
O RE"-LY Rob Orsini &
§ K% HARi Zed A. Shaw FF

. .\'a~

TP393. 09/v9

2007.

Rails Cookbook™ (& eng)
Rail Cookbook™

Rob Orsini

O’REILLY®

Beijing « Cambridge * Farnham « Kéln « Paris « Sebastopol « Taipei « Tokyo

O'Reilly Media, Inc. 84 & X % i B iR

FRAFHRA

BBERSE (CIP) Big

Rails £ #4345 = Rails Cookbook: ¥3¢/ (%) AR
(Orsini, R.) . — HEA— @R KERPHRE,
2007.6

HBLJE X . Rails Cookbook

ISBN 978-7-5641-0780-2

I.R.. I.B.. I HEINE-BFEH-EX
IV.TP393.092

P ERAE1E CIP i+ (2007) 8074179 5

ILHERRARE A A FEID
B 10-2007-087 5

©2007 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University Press,
2007. Authorized reprint of the original English edition, 2007 O'Reilly Media, Inc., the owner of all rights to
publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.
* X & ¥ & O'Reilly Media, Inc. & j& 2007,

E W ekl & dr X & kAR Rk 2007, W PR ok kAo dK B AT) h BRARe 4 B A A B AT B —— O'Reilly
Media, Inc. &) #4 T ,

BALFTH, AAHERAT, KHOETHRYFo L RTAUETH X EH,

+ 4/ Rails Cookbook (FZENR)

T/ Tkt

#HHi%it/ Edie Freedman, #{#

HIRE T/ ZHREKEHI (press.seu.edu.cn)

B/ FERPOAREE2 5 (APBLZRFS 210096)

R/ b dENRIE R A F

A/ 787N x 980%:Kk 16FHF 33.5EN5k
W/ 200746 HE 1R 20074 6 HE 1 RENRI
%/ 0001-3000 B}

2/ ISBN 978-7-5641-0780-2/TP - 128

#ir/ 68.005¢ ()

e ZFHI&E

O'Reilly Media, Inc. 4148

O'Reilly Media, Inc. &5 L7 UNIX, X, Internet fil b A LB BHBRAAF
S SHAIHRAT, FEEBEILHR AR,

M Ei%84] The Whole Internet User's Guide & Catalog) (¥4l #)2\ 3t B A58 1EH
LB BEENS0FH 2 —) E GNN (BRI Internet []k), FE
WebSite (¥ —/ £ PCHIWeb IR % 2 ¥}), O'Reilly Media, Inc.— & 4T Internet
b 3;:3:00 4= R

Ve EM R BB, OReilly Media, Inc. & BB EZHHENASBHIEE —&5—
FHB—IRFER. 5ASHITEVEBHREMLL, O'Reilly Media, Inc. RHHRE
B ENLE L E B, X4 OReilly Media, Inc.JERK T —AMEE AR T H b AR 7
HHiMR # 4k, O'Reilly Media, Inc. FiARIAE A ALIRTERBF 5, HERMELS
Wi AREK, OReilly Media, Inc i BH £ EENIEERE — NEFRAXE
BEHEAER. BBER, MAARSENRE, OReilly Media, Inc. kA 1R
#E MBS, FE% O'Reilly Media, Inc. EEHSHEVLFBRE, FLL O'Reilly
Media, Inc 5 H ¥y L R EREMH 2EBH,

HH B35 B

BB RN ARRRBFTIZ A, AREES A —NHARE R RO, HE
PLEARHI R RE AT Tl A7, Bki&Zh%n B % A TR ERHER T E RAURI ., 2R,
HRHLSURAE AR E R 2 R A5 R, 0 TH B EAEAR A REE —BiE
TRESMEFOBER, Rik¥EHRHEMEE O'Reilly Meida, Inc ik R, #hk
1R AL FANRRANIBERARBEEL AR EA B ANEE, LR ENRE Fifk
PRI R 2R EE. Kb, BEEBEHRSESNES A" HK, A K
HER” RIALIEE.

BMARIRBA L, Bl HREENENAXTLHIERAR . FBHLENHEA R
MERNAEREIAMTARREE, RN TREILEROEREFRE. AR OHE
EHERHERE R,

BRI ENR B 45, B4

o (BEARMERMEIH SR (RERR)
e (Ajax on Rails) (BENKR)

e (Javals XML F=RY (RZENAR)

o (%3] MySQLY (RZENAR)

e {Linux Kernel i RFMY (RENR)

e (Dynamic HTML &% F=IRY (FEMR)
e {ActionScript 3.0 Cookbook) (RZE[AR)

e (CSS:The Missing Manual) (BZENAR)

e (Linux BiAFM FEHIRY (RENR)

e (Ajax onJava) (EENKR)

e (WCEF Service ZR#2) (BZENAR)

e (JavaScript BURIEES FHRY (FEAR)

° (CSSHURHRE F=RR) (REENAR)

o (BARRGHE BT (RER)

e (%3] JavaScripth (FZENIR)

e (Rails Cookbook) (BZE[R)

Foreword

When Rob asked me to write the foreword for his book 1jumped at the chance. Actually,
I jumped at telling him I’d write the foreword and then I got distracted with billions of
things and had to finally get it down in a flash of brilliance. Trust me, it’s brilliant. This
foreword will change your life, cure baldness, give your enemies lymphoma, and nuns
will recite it to their classes as a reward for good behavior. It’s that good.

The reason I wanted to write a foreword for a cookbook, and specifically for Rails
Cookbook, is that I wouldn’t be here today if it weren’t for this type of book. When
learning to write code, administer systems, or cook fish the young junior will typically
run out and get your basic introductory books. These books try take the newbie through
a fixed road of learning that covers most topics lightly in the curriculum. At first this
is great, and the junior learns a lot of “bootstrap knowledge” with the things he didn’t
know he didn’t know getting filled in like grout over broken tile.

After this initial learning though, these books are fairly useless because they are horrible
references. If you read them straight through and put stickies on the important pages
you might get something out of it. Having to troll through one of these dense tomes to
find that thing you thought you remembered in chapter maybe 8 or 9 sucks really bad
at 2 a.m. Been there, done that, bought the pajamas in lime green.

This is where the “cookbook” genre comes into play, and why these types of books
made me a better programmer. The one book that stands out in my mind is Per! Cook-
book. No, I'm not saying that because it is also an O’Reilly book; I'm saying it because
that book was by far the most fantastic cookbook ever. In the days when 1 was doing
relatively serious Perl coding, having “the cookbook” around helped me learn all the
tricks 1 needed right when I needed them.

Perl helped me take charge of a wildly managed heterogeneous network of computers,
and the cookbook helped me tame the wild Perl. Perl was also my first light foray into
CGI programming and processing for the Web. It was a great way to learn CGlI too,
because all the nasty stuff was already taken care of, and Perl had all the gear you needed
to program back then. Oh, I remember <blink> fondly.

I'd have to say I didn’t learn any Perl until I bought my copy of the cookbook, slammed
it and a case of soda on a table, and spent an entire night writing a program to look for

malicious attacks in my system logs. I'd read a few good books, but it was the ability
to ask a question, get an answer, then implement the solution that taught me real Perl
coding. Best of all, I could apply a technique, read about how it worked, and then totally
forget about it, only leaving a tiny marker in my brain saying where to look it up again.

With my Perl Cookbook 1 became a rock star geek in my own little way. My peers would
spend hours trying to solve a problem, and I'd just look it up and bang it out with Perl
in a few minutes. I could manage huge numbers of systems with simple automation.
even learned to appreciate some of the quirks of Perl for what they were.

Why would I be talking about Perl in a Rails Cookbook foreword? Well, apart from the
fact that Rob said I could say anything in the foreword, the Perl Cookbook was the one
that set the standard for me. It doesn’t matter what language it was about; what mat-
tered was that this one book made me a competent Perl programmer and system
automator where nearly all other books fell flat. It’s a great example of the synergy of
a set of components making the whole greater.

The power of a good cookbook is its ability to impart expert knowledge in digestible
chunks to beginners. Just like with real cookbooks, they are designed for people who
may know the theory or basics of the task, but don’t have the mountains of domain
knowledge and experience that an expert steeped in the technology would have. The
cookbook gets readers into practicing and doing expert activities and hopefully teaches
them the right way to do the tricks of the trade.

Rob’s Rails Cookbook will hopefully do the same thing for those people just starting
out with their first Ruby on Rails project. It also will be a good reference for those
“beginning intermediates” who still have to look things up they rarely use or haven’t
done before. It’s also great for crusty old guys like me who can’t even remember what
we had for breakfast that morning.

—Zed A. Shaw, creator of Mongrel and MUDCRAP-CE Master Black Belt Sifu, http:/
www.zedshaw.com

xiv | Foreword

Preface

I’'ve been a full time web developer since 1998, and have worked with just about every
popular web scripting language over the years. During the dot-com boom, I kept busy
in web consulting shops, trying to turn various entrepreneurial ideas into profitable
web businesses. The boom was a very interesting time; the collective excitement over
some of the first popular web applications was infectious. I wrote a lot of code during
that time, some of which was a mess, but it was fun, and it was an introduction to a
career that [enjoy tremendously.

When the dot-com bubble crashed, the tone of the industry changed dramatically. Web
work dried up drastically, and the overall enthusiasm of the industry seemed to sink
into recession along with the industry’s economy. I managed to chain together various
web programming gigs, but the work was not as interesting as it had been when people
had more money to experiment with new ideas.

In 2004, 11anded a job as the webmaster at Industrial Light and Magic. At ILM, Iworked
mostly with Perl and Java, but this was also where I was introduced to Python. Toward
the end of my time at ILM, I began to hear about Ruby and a lot of the buzz on the Net
about it versus Python—both being very capable and lightweight dynamic languages.
While at ILM, I was immersed in the excitement of the visual effects industry and
managed to wait out the bad economy until finally landing a software engineering
position at O’Reilly Media. It was at O’Reilly that I first found out about Rails.

Around the time I started at O’Reilly, something very significant happened: Google
released Google Maps. The economy had been slowly recovering, but it was the release
of this one web application that re-ignited my excitement about web applications and
their development. What was so interesting about Google Maps was that it wasn’t using
any new technology. It was just an incredibly creative use of technologies that had been
around for years.

Being able to drag a map around seemed to shatter all previous assumptions about the
limitations of web software. After seeing this application, and a number of others that
were cropping up at the time, my view of the potential of the Web, as well as my
enthusiasm in developing it, was reborn. Now, if 1 could just have the same feeling
about the tools I was using.

That’s when 1 discovered Rails and simultaneously, Ruby. For me, discovering and
learning Rails had a similar effect to Google Maps; it seemed almost too good to be
true. Rails handled all of the things that I found most unpleasant about web develop-
ment automatically or so elegantly that they were no longer painful. The next thing I
noticed was how easily new projects were organized according to the MVC design
pattern.

1 had worked on many MVC projects before, but often they were home-grown and not
easily reusable. In some cases, the amount of setup involved made the benefits of using
MVC questionable, especially for smaller projects. I've often said that the simple act of
creating a Rails project felt like there was a room full of experienced software veterans
imparting their knowledge about sound application design, ensuring that my project
started off in the right direction.

I soon realized that nothing about the Rails framework or the best practices encouraged
by the Rails community was particularly new. In fact, most of the techniques and
methodologies involved have been around for years. What I found special about Rails
was that all of these things had come together, in sort of a perfect storm of best practices.
The result was a framework that made web development both enjoyable and rewarding.

With a number of Rails projects behind me, I started doing talks on Rails to various
groups around where I live. It was at a local Linux user’s group that I was approached
by Mike Hendrickson (the executive editor at O’Reilly) about writing a Rails book.
Mike Hendrickson then introduced me to my editor, Mike Loukides, and we decided
that I should write the Rails Cookbook. That was the beginning of a long process that
has finally resulted in the book you're now reading.

1 like to think of Rails as a successful refactoring of the process of web development
that just keeps getting better with time. It is my hope that this book will help you to
discover much more about this truly amazing framework.

Who This Book Is For

In preparation for writing this book, I tried to collect a lot of data about what the Rails
community needed most in a cookbook. To do this I collected data from the Rails
mailing lists as well as from the most active IRC channels. I wasn’t very scientific about
how I processed the data, but 1 did get a feel for what were many of the most commonly
asked questions. Based on this, I created an initial outline, and then ran it past as many
people as I could find, who reviewed and further edited it.

The outline has evolved since I first presented it to my editor, but it still targets the
needs of the bulk of the Rails community. The target reader for this book is someone
with web development experience, but perhaps new to Rails, or an intermediate Rails
developer.

xvi | Preface

That said, I believe that much of the information I present is going to be valuable across
the board; for example, Rails application deployment is a universal problem that all
Rails developers need to solve. In the end, I hope that everyone who reads this book
will find it significantly useful.

Other Resources

Web Sites

The key web sites for finding out about Ruby and Rails are http:/
www.rubyonrails.org, http://www.ruby-lang.org, and http://www.rubygarden.org. But
these web sites are far from the whole story. Perhaps more then any other technology,
Rails is driven by bloggers. Instead of providing an inevitably incomplete list of Rails
blogs, 1 suggest that you start by reading the main Rails blog (http://
weblog.rubyonrails.org) and discover other blogs that it links to.

Books

There are many excellent books on Ruby and Rails with more being added all the time.
Here are some that I recommend:

* Ruby for Rails by David A. Black (Manning)

s Programming Ruby by Dave Thomas, et al. (Pragmatic Bookshelf)

o Agile Web Development with Rails by Dave Thomas, et al. (Pragmatic Bookshelf)

* Rails Recipes by Chad Fowler (Pragmatic Bookshelf)

 The Ruby Way by Hal Fulton (Addison-Wesley Professional)

* Ruby on Rails: Up and Running by Bruce A. Tate and Curt Hibbs (O’Reilly)

s Mongrel: Serving, Deploying, and Extending Your Ruby Applications (PDF Shortcut)
by Matt Pelletier and Zed Shaw (Addison-Wesley Professional)

Conventions Used in This Book

Unless otherwise noted, the recipes in this book have been created for the release can-
didate of Rails version 1.2. The final version of Rails 1.2 should be available by the time
you have this book. A few recipes require Edge Rails. Installing Edge Rails is covered
in Recipe 2.8, “Installing and Running Edge Rails.” All recipes assume that you’re using
Ruby 1.8.4.

Some code samples have filenames mentioned before the code; the files that accompany
the code can be found on the book’s web page at http://www.oreilly.com/catalog/
9780596527310.

Preface | xvii

Font Conventions

The following typographic conventions are used in this book:

Italic
Used for file and directory names, email addresses, and URLs, as well as for new
terms where they are defined.

Constant width
Used for code listings and for keywords, variables, functions, command options,

database names, parameters, class names, and HTML tags where they appear in
the text.

Constant width bold
Used to mark lines of output in code listings and command lines to be typed by
the user.

Constant width italic
Used as a general placeholder to indicate items that should be replaced by actual
values in your own programs.

L)

i “
T
-
W s

+
N

This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example code
does not require permission. Incorporating a significant amount of example code from
this book into your product’s documentation does require permission.

This icon signifies a tip, suggestion, or general note.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Rails Cookbook by Rob Orsini. Copyright
2007 O’Reilly Media, Inc., 978-0-596-52731-0.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

xviii | Preface

Safari® Enabled

sﬂri When you see a Safari® Enabled icon on the cover of your favorite tech-
cooxs onums 110l0gY book, that means the book is available online through the O’Reilly
Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://safari.oreilly.com.

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North

. Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international/local)
707-829-0104 (fax)

We have a web page for this book where we list errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596527310
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O’Reilly
Network, see the O’Reilly web site at:

http:/f/www.oreilly.com

Acknowledgments

It goes without saying that writing a book is an enormous amount of work—this was
definitely true in my case. Thankfully, I received a lot of help from a very talented group
of people and I would like to acknowledge them.

The book’s biggest contributor, aside from myself, has been Mike Loukides. Mike’s
input was invaluable, whether he was refactoring a confusing paragraph or offering an
insight about an idea I hadn’t thought to include, he was there helping every step of
the way. The great thing about working with Mike is that he respected my goals for the
project and ultimately gave me complete creative freedom over the project. I look for-
ward to our continued friendship and being able to talk with him about our shared

Preface | xix

interest in music without worrying about the conversation being a side-track of some-
thing else. '

Fifteen people contributed recipes to the book. I'd like to point out the three that helped
me the most during the final stages of the process. Diego Scataglini contributed the
most recipes (12 total). More importantly, he produced many of these recipes with very
short notice as I pushed to fit in more content before the final deadline. Christian
Romney and Ryan Waldron also stepped up to the plate in the final stages and helped
fill out and clean up much of the book’s content. During the final days, the three of us
collaborated in #rorcb (a.k.a. The War Room), where I was able to delegate a huge
amount of work to each of them. Their contribution was outstanding but, most im-
portantly, we had a great time in the process. I'm grateful to everyone who contributed
recipes. They include Ben Bleything, Blaine Cook, Ryan Daigle, Bill Froelich, Evan
Henshaw-Plath, Rick Olson, Matt Ridenour, Dae San Hwang, Andy Shen, Joe Van
Dyk, Nicholas Wieland, and Chris Wong.

More special thanks goes to Coda Hale for doing an excellent pass over the book re-
sulting in several emails full of valuable suggestions. Also thanks to Evan Henshaw-
Plath (rabble), Zed Shaw, and Geoffrey Grosenbach (topfunky) for putting up with
many late night Rails questions and offering sound advice along the way.

The tool that I settled on for collaborating with reviewers was Beast (an excellent Rails
forum written by Josh Goebel and Rick Olson). A number of discussions happened
there that definitely improved the book several times over. I'm thankful to all who
reviewed my content and posted comments. They include Sam Aaron, Anjan Bacchu,
Tony Frey, Matt Grayson, Stephan Kamper, Bin Li, Tom Lianza, Thomas Lockney,
Matt McKnight, James Moore, Hartmut Prochaska, Andy Shen, Bill Spornitz, Andrew
Turner, Scott Walter, and Nicholas Wieland.

During the initial months of writing I switched between several different writing envi-
ronments. I finally settled on editing directly in DocBook. Once I accumulated a certain
amount of content and needed to perform various transformations, I quickly discovered
the limits of my knowledge of XML processing. This is where Keith Fahlgren and An-
drew Savikas stepped in with just the right XPath expression or XMLMind macro to
get the job done, which let me focus on writing.

Writing a book is like nothing I've ever done before. Because of that, I'm thankful that
I was able to talk with my friends who have written books about the process. Those
friends are Kyle Rankin, Andrew Savikas, and Tony Stubblebine.

Finally, I want to thank my wife for helping make this project possible. She essentially
became a single parent for quite a bit longer then she bargained for. I am grateful for
her support and encouragement.

xx | Preface

EIY

B Rl O VMO © e e TAIDES I

"ow

About the Author

Rob Orsini is an open source developer living in northern Californja. He currently
works for O’Reilly Media in the production software group. Previously, Rob was the
webmaster at Industrial Light & Magic, where he developed applications in support of
the special effects industry. Rob has been programming the Web since 1998, and upon
discovering Rails, hopes to continue for many more years to come. Rob is also a jazz
musician and a loving father.

Colophon

Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach to
technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Rails Cookbook is a Cape hunting dog (Lycaon pictus), also
known as the painted wolf or African wild dog. Cape hunting dcgs are only found in
African plains and semi-desert areas. Both male and female Cape hunting dogs weigh
about 45 to 60 pounds (20 to 27 kg) and measure 30 to 40 inches (76 to 112 cm) long;
unlike other species of dogs, they have only four toes. Although the coloring of each
dog’s coat is distinct, they all have black muzzles and the tips of their tails are white.
Cape hunting dogs have exceptional eyesight and large round ears that provide the dogs
with their primary sensory source when stalking prey. They can run up to 37 miles per
hour and have an extraordinarily high kill rate (98 percent). Their diet is carnivorous
and includes gazelle, zebra, antelope, and kudu; they stay hydrated from the blood of
their prey. Cape hunting dogs will not scavenge for fogd, unlike their sworn enemy,
the hyena. Although Cape hunting dogs have a fairly bad reputation with farmers, they
very rarely, if ever, hunt livestock and tend to live as far away from humans as possible.
These dogs travel in a family oriented pack and regurgitate meals for members that are
unable to join the chase, such as new mothers and injured dogs. The males live together
peacefully, but since only the alpha female is allowed to breed, females tend to viciously
fight for this honor or leave the pack. The Cape hunting dog is in danger of extinction
due to decreased territory, human-caused mortality (mostly poisoning and snaring),
and diseases from domestic dogs.

The cover image is from Lydekker’s Royal History. The cover font is Adobe ITC Gara-
mond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont’s TheSans Mono Condense.

Table of Contents

Forewordoiiiiiiiiiiiiiiiiiiiiiiiiii ittt e Xiii
Prefacecovviiiiiiiiiiii e Xv
1. GettingStartedcoooviiiiiiiiiiiiiiiiiiiiiiiiiiiiiieea 1
1.1 Joining the Rails Community 2

1.2 Finding Documentation 4

1.3 Installing MySQL 5

1.4 Installing PostgreSQL 8

1.5 Installing Rails 10

1.6 Fixing Ruby and Installing Rails on OS X 10.4 Tiger 12

1.7 Running Rails in OS X with Locomotive 14

1.8 Running Rails in Windows with Instant Rails 16

1.9 Updating Rails with RubyGems 18

1.10 Getting Your Rails Project into Subversion 19

2. Rails Development Ceeeeieareeseiaiieeeeananines ceeeriens 23
2.1 Creating a Rails Project 23

2.2 Jump-Starting Development with Scaffolding 26

2.3 Speeding Up Rails Development with Mongrel 28

2.4 Enhancing Windows Development with Cygwin 31

2.5 Understanding Pluralization Patterns in Rails 32

2.6 Developing Rails in OS X with TextMate 36

2.7 Cross-Platform Developing with RadRails 37

2.8 Installing and Running Edge Rails 38

2.9 Setting Up Passwordless Authentication with SSH 41

2.10 Generating RDoc for Your Rails Application 42

2.11 Creating Full-Featured CRUD Applications with Streamlined 45

3. ActiveRecordcoviiiiiiiiiiiiiiiiii e 49
3.1 Setting Up a Relational Database to Use with Rails 50

3.2 Programmatically Defining Database Schema 54

vii

3.3 Developing Your Database with Migrations 56

3.4 Modeling a Database with Active Record 60
3.5 Inspecting Model Relationships from the Rails Console 63
3.6 Accessing Your Data via Active Record 66
3.7 Retrieving Records with find 68
3.8 Iterating Over an Active Record Result Set 71
3.9 Retrieving Data Efficiently with Eager Loading 74
3.10 Updating an Active Record Object 77
3.11 Enforcing Data Integrity with Active Record Validations 81
3.12 Executing Custom Queries with find_by_sql 84
3.13 Protecting Against Race Conditions with Transactions 88
3.14 Adding Sort Capabilities to a Model with acts_as_list 92
3.15 Performing a Task Whenever a Model Object Is Created 97
3.16 Modeling a Threaded Forum with acts_as_nested_set 100
3.17 Creating a Directory of Nested Topics with acts_as_tree 104
3.18 Avoiding Race Conditions with Optimistic Locking 107
3.19 Handling Tables with Legacy Naming Conventions 109
3.20 Automating Record Timestamping 111

3.21 Factoring Out Common Relationships with Polymorphic
Associations 112

3.22 Mixing Join Models and Polymorphism for Flexible Data
Modeling 115
4. Action Controller cieenees vieenses teessesisisansernaines 121
4.1 Accessing Form Data from a Controller 122
4.2 Changing an Application’s Default Page 125
4.3 Clarifying Your Code with Named Routes 126
4.4 Configuring Customized Routing Behavior 127
4.5 Displaying Alert Messages with Flash 129
4.6 Extending the Life of a Flash Message 131
4.7 Following Actions with Redirects 133
4.8 Generating URLs Dynamically 134
4.9 Inspecting Requests with Filters 135
4.10 Logging with Filters 137
4.11 Rendering Actions 140
4.12 Restricting Access to Controller Methods 141
4.13 Sending Files or Data Streams to the Browser 142
4.14 Storing Session Information in a Database 144
4.15 Tracking Information with Sessions 146
4.16 Using Filters for Authentication 149
5. ActionViewooiiiiiiiiiiiiiiiiiiiiiiii cerriiiens ... 155
5.1 Simplifying Templates with View Helpers 156

viii | Table of Contents

5.2 Displaying Large Datasets with Pagination
5.3 Creating a Sticky Select List
5.4 Editing Many-to-Many Relationships with Multiselect Lists
5.5 Factoring Out Common Display Code with Layouts
5.6 Defining a Default Application Layout
5.7 Generating XML with Builder Templates
5.8 Generating RSS Feeds from Active Record Data
5.9 Reusing Page Elements with Partials
5.10 Processing Dynamically Created Input Fields
5.11 Customizing the Behavior of Standard Helpers
5.12 Creating a Web Form with Form Helpers
5.13 Formatting Dates, Times, and Currencies
5.14 Personalizing User Profiles with Gravatars
5.15 Avoiding Harmful Code in Views with Liquid Templates
5.16 Globalizing Your Rails Application

6. RESTful Development RPN
6.1 Creating Nested Resources
6.2 Supporting Alternative Data Formats by MIME Type
6.3 Modeling Relationships RESTfully with Join Models
6.4 Moving Beyond Simple CRUD with RESTful Resources
6.5 Consuming Complex Nested REST Resources
6.6 Developing Your Rails Applications RESTfully

7. Rails Application Testing Cerereeeeeanens Ceeresesernaees
7.1 Centralizing the Creation of Objects Common to Test Cases
7.2 Creating Fixtures for Many-to-Many Associations
7.3 Importing Test Data with CSV Fixtures
7.4 Including Dynamic Data in Fixtures with ERb
7.5 Initializing a Test Database
7.6 Interactively Testing Controllers from the Rails Console
7.7 Interpreting the Output of Test::Unit
7.8 Loading Test Data with YAML Fixtures
7.9 Monitoring Test Coverage with rake stats

7.10 Running Tests with Rake

7.11 Speeding Up Tests with Transactional Fixtures

7.12 Testing Across Controllers with Integration Tests

7.13 Testing Controllers with Functional Tests

7.14 Examining the Contents of Cookie

7.15 Testing Custom and Named Routes

7.16 Testing HTTP Requests with Response-Related Assertions
7.17 Testing a Model with Unit Tests

7.18 Unit Testing Model Validations

158
161
163
166
169
170
172
174
177
181
183
187
190
191
195

201
204
208
210
213
217
220

225
226
227
229
232
233
235
237
238
240
241
242
244
247
250
253
255
256
259

Table of Contents

