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Preface

The chapters in this book represent a sampling of theoretical, empirical, and applied
work with Pathfinder networks. These networks began in 1981 (Schvaneveldt & Durso,
1981) as an attempt to develop a network model for proximity data. The intervening years
have seen several developments of that original work. A theoretical paper relating Path-
finder networks to fundamental concepts in graph theory (Schvaneveldt, Dearholt, &
Durso, 1988) grew out of a conference organized by Frank Harary and Keith Phillips. The
chapters in this book represent a wide range of applications for network models.

The original motivation for developing Pathfinder grew out of our realization that
although network representations abound in theoretical work in cognitive psychology and
artificial intelligence, there were few methods for arriving at a network representation from
empirical data. Proximity data offer a convenient starting point for networks. Indeed,
proximity data serve as the building block for several interesting structural models such as
multidimensional scaling (MDS) and cluster analysis. Essentially, Pathfinder networks are
determined by identifying the proximities that provide the most efficient connections be-
tween the entities by considering the indirect connections provided by paths through other
entities. The resulting networks have several interesting properties (see Chapter 1), and
they have also proven to be useful in a variety of applications. There are now various al-
gorithms for deriving PFNETs in several computer languages running on several different
computers.!

There are a few features of this book that should be helpful to readers without much
background knowledge of graph theory. A brief primer on graph theory and Pathfinder
and a glossary can be found at the back of the book. References from all of the chapters
are compiled in a single reference section at the back of the book. Chapter 1 reviews some
definitions and properties of Pathfinder networks as well as some algorithms for deriving
these networks from proximity data. Chapter 2 is a general review of empirical work with
Pathfinder in cognitive modeling and an exploration of potential applications in social net-
works. The other chapters relate to several major themes.

Chapters 3, 4, and 5 address some methodological issues. Esposito (Chapter 3) devel-
ops and evaluates a version of Pathfinder that takes variability of proximity data into ac-
count. Roske-Hofstrand and Paap (Chapter 4) analyze some properties of proximity data
obtained by ratings and the implications for Pathfinder networks. Goldsmith and
Davenport (Chapter 5) present some measures of the similarity of two networks.

Chapters 6 through 10 report investigations of some basic phenomena in human mem-
ory. Esposito (Chapter 6) analyzes the relation between human judgments of the goodness
of categories and various formal characteristics of graphs. Cooke (Chapter 7) examines the
time required to judge that two concepts belong to the same category. Branaghan (Chapter
8) analyzes the ease with which lists of associations are learned. Rubin (Chapter 9)
investigates the strategies people use to search memory. Schvaneveldt (Chapter 10)
examines the representation of schemata in Pathfinder and connectionist style networks.

1li’rograms have been written in Pascal, C, LISP, and APL. Various versions of the programs run on IBM
PC, Apple Macintosh, and SUN Microsystems computers. Information on obtaining programs is avail-
able from: Interlink, Inc., P.O. Box 4086 UPB, Las Cruces, NM 88003-4086.
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Chapters 11 through 16 address applications of Pathfinder to problems in knowledge
elicitation, information retrieval, and interface design. McDonald, Plate, and Schvaneveldt
(Chapter 11) extract associative information from text and use this information to resolve
word ambiguity. Fowler and Dearholt (Chapter 12) address the classic problem of retriev-
ing information from large collections as in libraries. Kellogg and Breen (Chapter 13)
compare the models of systems to mental models of users. McDonald, Paap, and
McDonald (Chapter 14) attack the problem of establishing connections in Hypertext.
Gammack (Chapter 15) analyzes the use of different techniques for eliciting proximity in-
formation from an expert. Cooke (Chapter 16) develops a method for identifying the na-
ture of the relations between linked concepts in a network.

Chapters 17, 18, and 19 are concerned with still other aspects of knowledge represen-
tation. Goldsmith and Johnson (Chapter 17) investigate the use of networks and MDS
spaces to assess classroom learning. Onorato (Chapter 18) analyzes the ways in which
people organize information depending on the purpose of the information. Dayton, Durso,
and Shepard (Chapter 19) examine the differences in the way solvers and nonsolvers or-
ganize problem-relevant information.

Obviously, there are many interrelations among the various chapters. As an aid to see-
ing these relations and as an initial illustration of the use of Pathfinder, I constructed Figure
1. This figure shows a Pathfinder network depicting the close associations among the
chapters.

{11 Text EaEsts |

10 Networks & Schemata_}

6 Graphs and Clusters
|_4 Judging Similarity |}

3 Fuzzy PENETSs

1 Properties of PFNETs
[O2Info
S Graph Similarity

17 Classroom Leaming

7 Category Judgments

trong Associlates

[0 The Case of Rhyme ]

16 Interpreting Links

[L18 Problem Schemata

13 User Models

Figure 1. The modified PENET(r = o, ¢ = n—1) for the chapters in this book.

To construct Figure 1, I first made a list of the three chapters most closely related to
each chapter. This ordered list of associations was used to construct a matrix of proximity
data where an entry was 1, 2, or 3 if the chapter on the column was the first , second, or
third most associated with the chapter on the row. Other entries were treated as infinite.
This matrix was non-symmetrical and the Pathfinder network that resulted from analyzing
the matrix had directed links. However, I was not able to interpret the directions of the
links so I made all of the links undirected as shown in the figure.
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This figure can be used to find chapters that are closely related to other chapters. Sev-
eral groups of interrelated chapters can be identified in addition to the one I used to order
the chapters. It is obviously impossible to capture all of these relations in the linear order-
ing enforced on a book.

The development of Pathfinder and much of the research reported in this book have
been supported by the National Science Foundation (IST-8506706), the Air Force Human
Resources Laboratory (F33615-84-C-0072 and F33615-80-C-0004), Texas Instruments,
Inc., and the National Aeronautic and Space Administration (NAG 2-453). Such support
has been invaluable in the development of the methods and research.

I gratefully acknowledge the assistance of several people in assembling this book.
Derek Partridge encouraged me to undertake the project in the first place. Most of the au-
thors reviewed one or more chapters in addition to writing their own. Douglas Nelson and
David Farwell also provided very helpful reviews. My associates here at New Mexico
State were invaluable in their assistance with all of the details and in the defense of concep-
tual coherence. Iam particularly grateful to Bob Fiegel, Tarra Fiegel, Rebecca Gomez, and
Paula Moreland for their help. Thanks also to my wife, Ann, and daughter, Susan, for
their love and support.

R. Schvaneveldt
April 11, 1989
Las Cruces, New Mexico
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Chapter 1

Properties of Pathfinder Networks
Donald W. Dearholt and Roger W. Schvaneveld:

Network models have played important roles in various areas of cognitive science and
~ computer science. In cognitive psychology and artificial intelligence, network representa-
tions of concepts stored in semantic memory have been used in models of memory retrieval
and human performance (e.g., Anderson, 1983; Collins & Loftus, 1975; Collins &
Quillian, 1969; Friendly, 1977, 1979; Meyer & Schvaneveldt, 1976; Rumelhart &
McClelland, 1986), scene description and analysis (e.g., Brooks & Binford, 1980; Waltz,
1972; Winston, 1970), natural-language processing (e.g., Bobrow & Webber, 1980;
Fillenbaum & Rapoport, 1971; Kintsch, 1974; Quillian, 1967, 1969; Schank, 1972;
Woods, Kaplan, & Nash-Webber, 1972), and knowledge representation (e.g., Brachman,
1977, 1979; Fahlman, 1979; Fikes & Hendrix, 1977; Griffith, 1982; Novak, 1977;
Schmolze & Lipkis, 1983; Sowa, 1984; Woods, 1975).

In database systems, a network data model often results in efficient representations of
sets of concepts (Date, 1981; Ullman, 1982). Thus far, the network model incorporated in
database systems has been constructed with two primary objectives: providing efficient data
access for the anticipated user environment and making the most of the rather severe limita-
tions imposed by present computer operations and architecture. Although the network data
model used most frequently in database models (CODASYL, 1971) can support abstrac-
tions of essentially any type, there are constraints (for the purpose of modularity, simplicity
of definition, and hardware support) that must be circumvented by artificial programming
devices. Networks identifying relationships between data items have been proposed for
designing the logical schema of a database system (e.g., see Martin, 1977, Chapter 6) by
means of bubble charts. The bubble charts are used to indicate relationships between data
items (e.g., functional dependencies, primary keys, and secondary keys). The bubble
charts are usually viewed as an intermediate step in the development of a logical schema.
Clustering strategies for data items have been investigated and proposed for improving ex-
pected retrieval time, based on the estimated likelihood of retrieval of data items contingent
upon the retrieval of other data items (e.g., Navathe & Fry, 1976; Schkolnick, 1977).

Recently developed techniques from our laboratory and elsewhere allow researchers to
derive networks from the same proximity data employed by multidimensional scaling
(Dearholt, Schvaneveldt, & Durso, 1985; Hutchinson, 1989; Schvaneveldt, Dearholt, &
Durso, 1988; Schvaneveldt & Durso, 1981; Schvaneveldt, Durso, & Dearholt, 1989).

Networks and Proximity Data
Hutchinson’s NETSCAL procedure (Hutchinson, 1981, 1989), which makes ordinal

data assumptions, is based on a theorem of Hakimi and Yau (1964) regarding the distance
matrix of a graph and its realizability. The distance metric used by Hakimi and Yau is the
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sum of edge weights along a path, so that the distance between nodes is the (minimum)
sum of the weights (distances) of the edges along a path between the nodes. This measure
of path length is appropriate for ratio-scale data. Hutchinson, however, also used a dis-
tance metric in which the distance between nodes is the smallest maximum weight along
any of the paths between the two nodes. This path-length measure is appropriate for ordi-
nal as well as ratio-scale data. A serious shortcoming of Hutchinson’s work is that his
Corollary I considers triangle inequalities of only two-link paths. That is, the triangle
inequality can be violated in paths having three or more links in Hutchinson’s networks.
This seems to be an unfortunate limitation, inappropriate for the scaling of data, and per-
haps also for cognitive modeling, although psychological proximity may not always obey
the triangle inequality (Tversky, 1977; Tversky & Gati, 1982).

The triangle inequality can be viewed in three different domains. The first, and the
sparsest, is in euclidean space, as addressed by Hakimi and Yau (1964), in which the tri-
angle inequality must always be satisfied. The second is the class of problems in which
measures of similarity or “distance” are measured objectively by set intersections; for most
such problems, there is no expectation of transitivity holding, so that there is likewise no
expectation that the triangle inequality will be satisfied, either. That is, if we know the in-
tersections of sets A and B, and of B and C, we do not generally know anything about the
intersection of sets A and C. The information retrieval application to be discussed in detail
in the chapter by Fowler and Dearholt (Chapter 12, this volume) is an example of such a
problem in which the triangle inequality may be violated. The third domain is that of sub-
jective estimates of similarity, in which data frequently show violations of the triangle
inequality. Philosophically, it is attractive to use geodetic distance measures, in which the
distance between each pair of nodes is considered to be the length of the shortest path avail-
able between those nodes; indeed, in graph theory this has been the usual definition of dis-
tance. Then, a violation of some triangle inequality is never a part of a path between any
pair of nodes, because a shorter alternative path is always available. Thus the omission of
the edges which violate some triangle inequality in a network assures the preservation of
the (geodetic) distances between all pairs of nodes and provides a simpler structure which
possesses precisely those edges which are responsible for the most economical paths
(Schvaneveldt, Dearholt, & Durso, 1988).

The links that are omitted include those due to differences on two or more separable
dimensions, in which the triangle inequality is expected to be violated, as discussed by
Tversky and Gati (1982). That is, if A and B are judged to be similar because of feature x,
and B and C are judged to be similar because of feature y, then A and C will normally be
judged to be less similar than the triangle inequality would indicate. Thus if salient asso-
ciations are linked in a graph paradigm, the absence of a link can denote a difference in the
basis for judged similarity.

We have developed a procedure called Pathfinder (several equivalent procedures, ac-
tually) to generate a class of networks called PENETSs, which are based on estimates or
measures of distances between pairs of entities. This procedure allows a spectrum of as-
sumptions to be made about the data, including ordinal and ratio properties. The data re-
quired are either similarities or distances. Similarities can be obtained either from a sub-
ject’s estimates of the similarity of each pair of entities in the set or from a measure of set
intersections. Distances can be obtained in some domains by estimating or computing ap-
propriate differences between all pairs of entities. The result of the Pathfinder procedure is
a network which is either a directed graph (if the similarity or distance matrix is not sym-
metrical) or an undirected graph otherwise. Each entity in the set is represented as a node
in the network, and each link that is entered in the network has a weight value determined
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by the distance between the two entities so linked. Our network generation proced.urc in-
corporates two parameters. The first, the Minkowski r-metric, determines how distance
between two nodes not directly linked is computed. The weight of a path with weights wy,

Wo,.., Wy is:
2 k r Yr
WeP)=| 2
i=1

For r = 1, the path weight is the sum of the link weights along the path; for r = 2, the
path weight is computed as euclidean distance is computed; and for r = o, the path weight
is the same as the maximum weight associated with any link along the path. We will use
“distance” in this chapter to mean the Minkowski distance (geodetic), which depends upon
the value of the r-metric. The second parameter is the g parameter, which is a limit on the
number of links in the paths examined in constructing a network. Its value determines the
maximum number of links in paths in which the triangle inequalities are guaranteed to be
satisfied in the resulting network. Our procedure generates families of PENETS, and we
can generate Hutchinson’s (1989) networks as a special case with 7 = oo and g = 2.

The links omitted from a PENET are omitted because they violate a triangle inequality
involving g or fewer links. These omissions preserve all (geodetic) distances from the
original data, however, and because not all links are present in most PFNETS, structural
features are easier to ascertain. If a distance between two nodes not directly linked must be
computed from the PFNET, it is computed using the Minkowski metric, resulting in a com-
puted distance less than that given explicitly in the original data.

Advantages of PFNETs include (1) the capability of directly modeling asymmetrical
relationships (Hutchinson, 1981; Tversky, 1977), which is more difficult with multidi-
mensional scaling (Constantine & Gower, 1978; Harshman, Green, Wind, & Lundy,
1982; Krumhansl, 1978); (2) the provision for a complementary alternative to multidimen-
sional scaling which often provides a more accurate representation of local data relation-
ships than does multidimensional scaling; since multidimensional scaling must move data
points to minimize a global error criterion, the resulting relationships between nei ghboring
points is often significantly different than the original data would indicate; (3) the fact that
hierarchical constraints in most cluster analysis techniques do not apply to PFNETS; (4) the
representation of the most “salient” relationships present in the data; (5) the provision for a
new paradigm in studying models of classification; and (6) the provision for a more
quantitative paradigm for some of the issues in which networks have been invoked qualita-
tively or designed intuitively.

From the viewpoint of cognitive modeling, a disadvantage of PENETs in the present
state of development is that we have no way of knowing the features upon which similarity
judgments are made. Thus the semantic content of links is not easily discernible (but see
Cooke, Chapter 16, this volume). The empirical data we have collected, however, should
be viewed as similarity estimates having components which may be unknown; but the use
of such data seems important in bridging the gap between the more standard semantic net-
works (in which the researcher labels links according to his preferences or beliefs at the
time) and a more objective representation of the knowledge of interest. For domains in
which objective measures of distance are available, PENETSs provide unique representa-
tions of underlying structure not obtainable from any other scaling method.
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Definitions and Alternatives

In this section we present definitions to provide the proper foundation for the genera-
tion procedures and theorems that follow. A PFNET has n nodes, denoted Ny, Ny,..., N,
(or Ny, Np,...). A link is an association between a pair of nodes which can be either undi-
rected or directed. A directed link is called an arc, and an undirected link is called an edge.
In this chapter we will deal mainly with networks having undirected links, or edges, but
some of the definitions are more general, and a few examples of directed networks will be
given to illustrate this generality. In this spirit, links are labeled e;j, for the edge between
N; and N; (or for the arc from N; to N ). Nj and N; are end nodes of the link e;;. The dis-
tance from node N; to N; (along the link e;)) is the weight wij, and these weights are often
written in matrix form as an 7 x n matrix W The elements of W can be considered as dis-
tances between nodes along the direct paths between every pair of nodes. The distances are
often considered as dissimilarities, and W is called either the adjacency or weight matrix.
We assume that w;; = 0 and w;; >0 for 1 <i,j<n where i #/. If this matrix is sym-
metric, then a PFNET derived from it is an undirected network. Typically the distance
measures (weights) for each pair of entities (nodes) are found either empirically, from simi-
larity estimates by human subjects, or analytically, using some appropriate measure of set
intersection and set union, or some distance metric between entities.

A path from node N, to node N,, passing through nodes N, N,, and Ny, is denoted by
P gpede (f the intermediate nodes are important) or P, otherwise. The former presumes the
existence of edges ey, ep, €.4, and ey, (either undirected or with appropriate directions),
whereas P, presumes the existence of some unspecified set of edges (or arcs) connecting
N, and N,. The weight of a path P is denoted W(P,,), and the function W(P) is determined
by the r-metric and the weights wj.

The triangle inequality is incorporated into our generation procedure by means of the ¢
parameter.

Definition 1
A network is g-triangular if and only if all possible triangle inequalities involving paths
with m < g links are satisfied, using links and weights in the graph and the r-metric

chosen. An example is the triangle inequality
1r
w S(w'+w' +...+w’)

ge ab " Wb &

which is a constraint on the weights of two alternate paths between nodes Nz and N,. For
a graph with n nodes, there can be at most n—1 edges in any path in which there is no cycle.
Thus the ¢ parameter is at most n—1. Geodetic distances in the network are unchanged if
edges which would violate triangle inequalities are omitted.

Definition 2
The (geodetic) network distance d;j between nodes N; and N; is computed as a function
of all path weights W(Py), for all paths P;; which connect nodes N; and Njas

Dij=MIN (WP, ; ), WP, ), ..., W (P, )

1
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That is, the distance between two nodes is the weight of the smallest path between those
nodes, with all path weights calculated using the (same) appropriate r-metric.

The r-metric and the g parameter provide the elements needed to assure that the net-
works generated from a particular set of proximity data possess the metric properties dis-
cussed in Hakimi and Yau (1964), with the following provisions:

1. The distance from a node to itself is assumed to be zero.

2. The data matrix must be symmetric so that the PENET is undirected;
then the distance between any pair of nodes is independent of direction.

3. The triangle inequality is satisfied for all paths having as many as ¢
edges. To assure that no triangle inequalities whatsoever are violated, g
can be set to the number of nodes less one.

For situations in which these metric axioms are satisfied, the concept of distance along
a path is the same as the weight of that path. Because the r-metric can take on values from
one through infinity, and the g parameter can take on values from one through the number
of nodes less one, many different PENETs can be constructed from a given set of proxim-
ity data. However, different values of r and g can result in the generation of the same
(isomorphic) PFNETs. Frequently, important information from a given set of proximity
data can be obtained from different PENETS, constructed using different values of r and q.
Thus it is often not essential that particular choices for r and q be made, to the exclusion of
other values. Furthermore, it is sometimes desirable (in cognitive modeling, for example)
to violate the metric axioms presented above (also in Hakimi & Yau, 1964; and in Tversky
& Gati, 1982). The possibility of constructin g directed PFNETS from asymmetric proxim-
ity data and (independently) of varying the ¢ parameter provide ways of violating these ax-
ioms which correspond to observations about human performance (see, for example,
Ortony, 1979; Tversky, 1977; and Tversky & Gati, 1982). Modeling traffic flow on one-
way streets provides another example in which asymmetric data are relevant.

Definition 3
A PFNET(r, q) is a septuple (N, E, W, LLR, LMR, r, g) in which:

N is the set of nodes (concepts), denoted N;;

E is a square matrix representing names of links in the complete graph (i.e.,
ejj is the name of the link connecting nodes N; and Np;

W is the square weight matrix, and its entries are the weights associated
with the links in the corresponding positions of the E matrix. The
weights on the main diagonal are assumed to be zero, and the remaining
weights are assumed to be finite and nonnegative. Thus wy; is the
weight of link ejj;

LLR, the link-labeling rule, is the procedure used to determine a label for
each link, according to some classification scheme;

LMR, the link-membership rule, is the procedure used to determine whether
or not each element of the E matrix is added to the PFNET(r, q);

r is the value of the r-metric, and 1 <r < oo;

q is the value of the g parameter, and qge {1,2, .., n-1}, where n is the
number of nodes.
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Definition 4
The link-membership rule (LMR) for PFNETs (either directed or undirected) is given
by the following procedure:

1. Define a network consisting of all nodes (concepts) N;, but no links;

2. Order all elements ¢;; of the E matrix in some nondecreasing order of
their associated weights wy;

3. Consider each e;;, and include e;; in the PENET(r, g), if and only if ¢;;
provides a path tj m N; to N; which has a weight at least as small as the
weight of any other path having no more than g links, using the r-metric
to compute the weights of multiple-link paths.

This definition is useful primarily in establishing the concepts associated with Path-
finder networks; computationally efficient algorithms for generating PFNETs will be given
in the next section. As an example of the LMR, consider the weight matrix:

1
W=

»n=NOo

45
024
401
310
for the nodes N;, N5, N3, and Ny. The complete graph is as shown in Figure 1. The arcs
are not labeled because we have not yet developed a labeling rule for directed PFNETS.

(Labeling edges with some LLR does not affect the edge membership of an undirected
PFNET, because the edges are put there by the LMR, which makes no use of edge labels.)

N1\<2
; 3
A
5

1

> N,

G (N

Figure 1. Complete graph for the example.

Let r =1 and g = 2. Applying the link membership rule, the PENET(r = 1, ¢ = 2)
shown in Figure 2 is obtained. Note that e;4 is in the PFNET because its weight ties with
the weight of the path P44, even though the arc e,y is not itself in the PENET; if it were in
the PENET, it would violate the triangle inequality for the alternative path P34. The path
P934 has less weight, but is not considered because it has three arcs, and for this example
we assumed g = 2. The PFNET in Figure 2 is two-triangular, since the ¢ parameter is two.



