Solving Problems in

FLUID
MECHANICS
Volume 2

v
i B J F Douglas




8 8762304

Solving Problems in Fluid
Mechanics

Volume 2

J. F. Douglas Msc PhD DIC ACGI CEng MICE MIMechE MIStructE

»M»
L
mmn
| 4

Longman
Scientific &
Technical




Longman Scientific & Technical

Longman Group UK Limited

Longman House, Burnt Mill, Harlow

Essex CM20 2JE, England

and Associated Companies throughout the world

All rights reserved; no part of this publication may be
reproduced, stored in a retrieval system, or transmitted
in any form or by any means, eléctronic, mechanical,
photocopying, recording, or otherwise, without the
prior written permission of the Publishers.

© J.F. Douglas 1970, 1975, 1986

First published by Pitman Publishing Limited in 1970 under the title

Solution of Problems in Fluid Mechanics Part 2

All metric edition first published in 1975

Ninth impression 1984

This edition published by Longman Scientific & Technical in 1986 under the title
Solving Problems in Fluid Mechanics Volume 2

British Library Cataloguing in Publication Data
Douglas, J.F.

[Solution of problems in fluid mechanics]

Solving problems in fluid mechanics. — All-metric

ed. — (Solving problems)

Vol. 2

1. Fluid mechanics

I. [Solution of problems in fluid mechanics]

II. Title

620.1'06 TA357

ISBN D0-582-28k43-3

Produced by Longman Singapore Publishers (Pte) Ltd.
Printed in Singapore.



Solving Problems in Fluid Mechanics

Volume 2



Other titles in the Series

Solving Problems in Vibrations, J.S. Anderson and M. Bratos-
Anderson

Solving Problems in Structures Volume 1, P.C.L. Croxton and
L.H. Martin

Solving Problems in Fluid Mechanics Volume 1, J.F. Douglas
Solving Problems in Soil Mechanics, B.H.C. Sutton

Solving Problems in Solid Mechanics Volume 1, S.A. Urry and
P.J. Turner

Solving Problems in Solid Mechanics Volume 2, S.A. Urry and
P.J. Turner



Preface

The treatment adopted in this second volume is exactly the same as that
employed so successfully in the first volume, the subject matter of each
section being presented in the form of question and answer. The reader
will find all the definitions and theory required, together with selected
problems which are fully worked out, and plenty of exercise questions
with numerical answers on which to practice and develop skill and
understanding.

The material included in this volume covers more advanced work in
Fluid Mechanics for engineering students in Universities, Polytechnics
and Colleges of Higher Education. The fullness of the treatment has in
some places had to be restricted owing to the limited space available.
The reader seeking further information in any particular field will find
it helpful to refer to “Fluid Mechanics” by Douglas, Gasiorek and
Swaffield (Pitman 2nd. Edn 1985).

I would again like to express my appreciation of the assistance which
I have received from my former colleagues in the teaching profession. I
am particularly indebted to Dr. R.D. Matthews for his advice on the
preparation of this new text and for the provision of examples and
exercises with particular reference to Chapter 9.

I hope that my readers will not hesitate to let me know of any dif-
ficulties that they may experience with this text and I will be glad to
receive any constructive criticism.

John Douglas September 1985
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1.1 Checking
equations

Dimensional analysis

Dimensional analysis is a mathematical method which is of consider-
able value in problems which occur in fluid mechanics. As explained in
Part One all quantities can be expressed in terms of certain primary
quantities which in mechanics are Length (L), Mass (M) and Time (7).
For example

Force = mass X acceleration

= mass X length/time?

Thus the dimensions of Force will be MLT -2,

In any equation representing a real physical event every term must
contain the same powers of the primary quantities (L, M and T). In
other words, like must be compared with like or else the equation is
meaningless, although it may balance numerically.

This principle of homogeneity of dimensions can be used, (1) to check
whether an equation has been correctly formed, (2) to establish the
form of an equation relating a number of variables, and (3) to assist in
the analysis of experimental results.

Show by dimensional analysis that the equation
p+ 3pv’ + pgz=H

is a possible relationship between the pressure p, velocity v and
height above datum z for frictionless flow along a streamline of a
fluid of mass density p, and determine the dimensions of the
constant H.

Solution. If the equation represents a physically possible relationship
each term must have the same dimensions and therefore contain the
same powers of the primary quantities L, M and T.

The procedure to be adopted is first to determine the dimensions of
each of the variables in terms of L, M and T, and then to examine the
dimensions of each term in the equation.

The dimensions of the variables are
force mass X acceleration

area area
= ML™T-2

Pressure p =

DIMENSIONAL ANALYSIS 1



1.2 Velocity of a
pressure wave

; mass
Mass density p = clome ™ ML-3

length

- =LT?
time

Velocity v =

Gravitational acceleration g = LT -2
Height above datum z = L

The dimensions of each term on the left-hand side are

p=MLT-? }p0® = ML-® x L*T-% = ML-'T->
pgz = ML® X LT-? x L = ML-'T-?

Thus all terms have the same dimensions and the equation is physically
possible if the constant H also has the dimensions ML-1T-2,

The velocity of propagation a of a pressure wave through a
liquid could be expected to depend upon the elasticity of the
liquid represented by the bulk modulus K and its mass density p.
Establish by dimensional analysis the form of a possible
relationship.

Solution. Assume a simple exponential equation
a = CK°® ¢))

where C is a numerical constant and a and b are unknown powers.

The dimensions of the variables are: velocity @ = LT-', bulk
modulus K = ML™*T~?, mass density p = ML-3. If equation (1) is to
be correct the powers a and b must be such that both sides of the
equation contain the same powers of M, L and T. Rewrite equation (1)
replacing each quantity by its dimensions, remembering that the con-
stant C is a pure number.

LT = Mol —eT—2a X MbL—Sb
Equating powers of M, L and T,

O=a+b
l=—a—3b
—1=-2a
from which a=+% and b= —}

Thus a possible equation is @ = C \/ g

Compare this result with 10.5.
Dimensional analysis gives the form of a possible equation but the
value of the constant C would have to be determined experimentally.

2 SOLVING PROBLEMS IN FLUID MECHANICS



1.3 Pipe flow

Show that a rational formula for the loss of pressure when a
fluid flows through geometrically similar pipes is

Iv? d
ettt ()
u

where d is the diameter of the pipe, / is the length of the pipe, p is
the mass density and u the dynamic viscosity of the fluid, v is the
mean velocity of flow through the pipe and ¢ means “a function
of”.

Solution. Assume p = Cp®l®v°d°u’ where C is a numerical constant
and q, b, c, e, fare unknown powers.

The dimensions of the quantities are: p = ML™'T"2, p = ML"3,
Il=L,v=LT"',d=Landu = ML™'T"".

Substituting these dimensions for the quantities,

ML™T~2 = M°L~3* x L* x L°T-° x L* X M'L~'T~/
Equating powers of M, L and T,

l=a+f (M
—l=-3a+4+b+ct+e—f 2)
—2=—c—f 3)

There are five unknown powers and only three equations, so that it
must be decided to solve for three of the unknown powers in terms of
the others. In practice this decision is made from experience; in
examination problems some indication is usually given in the question
as to the form of the final result which depends on the choice of un-
knowns to be solved. In this case solve for the powers of p, v and d,
namely a, ¢ and e.

From equation (1) a=1—f

From equation (3) ¢=2—f

From equation 2) e=—14+3a—c—b+f

=—f—b

Substituting these values in the original equation

p= Cpl-flbv2~fd-f—b'uf
1\ (pvd\ -
_ 2 (2 ) (222
= Cpv (d) (ud)
o0l (1) pod)
=a C(d) P

. — . b1
For geometrically similar pipes 7 1s a constant and (5—1) can be

b-1
combined with C. Putting K = C (g)
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— £ g (p2d) ™
P_dK(ud)

Since neither K nor f are known this is written simply as

r="74(%) @

It is interesting to compare this result with the Darcy formula

1 v?
hf=4f3@

. p W (pvd)
From equation (4 hy="—=—d|—
qaton@® b= =% s
which indicates that the Darcy coefficient f must be a function of the
pipe Reynolds number pvd/u. This has already been shown by more
orthodox methods (see Volume 1).

1.4 Pipe flow
A rational formula for loss of pressure when fluid flows
through geometrically similar pipes is

_ plv? <pvd>
p=—" (] T

The measured loss of head in a 50 mm diam pipe conveying water
at 0-6 m/s is 800 mm of water per 100 m length. Calculate the
loss of head in millimetres of water per 400 m length when air
flows through a 200 mm diam pipe at the “corresponding
speed”. Assume that the pipes have geometrically similar
roughness and take the densities of air and water as 1:23 and
1000 kg/m* and the absolute viscosities as 1:-8 x 10™* and
1-2 x 1072 poise respectively.

. plv? | (pv . ; p
Solution. The formula p = 7 ¢ o) derived by dimensional

analysis in example 1.3, might appear to be of little use since the nature
of the function ¢(pvd/u) is unknown, but it can be used for comparison
of the pressure drops in two geometrically similar pipes provided that
the value of the Reynolds number pvdju is the same in both cases. Then

() -+ 2

and the ratio of pressure drops simplifies to

Pr_p b ov? dy

P2 P2 ls v? d;

The velocity of flow in the second pipe required to make the Reynolds
number the same in both is known as the corresponding speed. Using
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1.5 Resistance to a
partially-submerged
body

the suffix w for the pipe containing water and a for that containing air,
for equality of Reynolds numbers,

Pwvwdw _P avada

Mw HMa
. . dv Ua
d d f = =D, By Sk pa
Corresponding speed for air = v = v o T b

1000 50 18 x 10-*

=06 733 X200 X T2 x 10-2

= 1-83m/s

. Pa >
Ratio of pressure drops == = — — — —
P P Pw  Pw l,d, vw2

_ 123 400 50 s 1-832

= 7000 * 700 ™ 200 X 062

If loss of head per 100m in 50mm pipe is 800mm of water
Loss of head per 400m in 200mm pipe = 0-01144 x 800

= 9-15mm of water

= 0-01144

Find by dimensional analysis a rational formula for the
resistance to motion R of geometrically similar bodies moving
partially submerged through a viscous, compressible fluid of
density p and coefficient of dynamic viscosity ¢ with a uniform
velocity V.

Solution. The resistance R will be due to skin friction, wave resist-
ance and compressibility of the fluid and will depend on the size of the
body denoted by a characteristic length /, the velocity V, the density p,
viscosity 4 and bulk modulus K of the fluid and the gravitational
acceleration g (for wave resistance). Thus R is a function of /, V, p, u,
K and g. The form of this function may be simple as was assumed in
example 1.4 or may consist of a series of terms made up of the product
of the variables each raised to suitable powers

R = AFV’puPK%g™ + A\ VpiuP K9gn + .. (¢))
where A4, 4;, . . . are numerical constants, x, x;, . . ., ¥, J1, . . . etC.
are unknown indices. Thus

R

A X1-X - = - —qarl—r
W: 1+ :Zl [1-XYI-YpT =Ty Pl-PK a1 ~agr

Since the first term on the right-hand side is a pure number, the
equation will only be correct if dimensionally
R = AFV’puPKg’

The dimensions of the quantities are: R = MLT-%, /=L, V = LT,

p =ML u=ML"T', K=ML"'T? g = LT Substituting in
equation (1)

MLT-2=L* X L¥T-v X M?L~3* x MPL-?T-? X MOL-9T-23 x L'T- 2
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1.6 Thrust of screw
propeller

Equating powers of M, L and T

=z+p+gq )
l=x4+y—3z—p—q+r 3
—2=-y—p-—29-2 @

Equations (2), (3) and (4) allow of three solutions only. A useful result
is obtained by solving for x, y and z giving

z=1—-p—q, y=2—p—29—2r, x=2—p+r.

All the other terms on the right-hand side of equation (1) are similar
to the first so that by the same dimensional reasoning

X =2-pitn, p=2-p—2-2n, n=1l-p—q

and so on. Substituting in equation (1)

o) ) )T
VI\-"( ¥V \%( ¥ \"n
+ 4, (Pu) (\/(K/p)) (7@) +.. }

14
\/ (K/p)

and

The series in brackets is an unknown function of K
V(g)

and can be written

pvi_V_ ¥ } &

RS PV”’“"‘{ u V&R V)

The terms in the function are all dimensionless groups,

’—’5—1 is the Reynolds number,

7(-;/— is the Mach number and
\/ ) is the Froude number.
Equation (5) may also be written
R 4 {;i/_l V V }
pV22 7 | u v/(Klp) +/(Ig)

in which case R/pV2/2 will also be found to be dimensionless.

Assuming that the thrust F of a screw propeller is dependent
upon the diameter d, speed of advance v, fluid density p,
revolutions per second » and coefficient of viscosity u, show that
it can be expressed by the equation

dn
F = 2492 )2 L2
BsEa, {pdv v }
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1.7 Buckingham'’s Pi
theorem

Solution. F will be a function of d, v, p, n and u. Instead of expanding
this function fully as in example 1.5, since all the terms are similar we
can write

F = YXAd™v*pin'y’ (@)
where 4 is a numerical constant and m, p, g, r and s are unknown

powers.

The dimensions of the variables are F = MLT-2,d =L, v = LT},
p=ML3n=T"19n=MLT.

Substituting the dimensions for the variables, equation (1) will be
true if

MLT-2=L™ X L°T-? X M°L™% X T~" x M*L~°T-*
Equating powersof M 1 =gq + s
L l=m+p—3q—s
T —-2=—p—r-—s
The equation given in the problem indicates that it is desirable to solve
for m, p and ¢ in terms of r and s.
gq=1—=5 p=2—r—s
m=1—p+3g+s=2+r—s
Substituting in equation (1)
F = 2Ad2+’_sl)2_r_spl_snr/,ls

Regrouping by powers
= Sdpar? () (7Y
F = T Apd%v (pdv) (v)
which can be written 2
= od?p2d | -2, &
F=pd vy dv v}

where ¢ means “a function of”.

State Buckingham’s I7 theorem and apply it to the problem of
example 1.6.

Solution. Buckingham’s II theorem states that if there are n variables
in a problem and these variables contain m primary dimensions (for
example M, L and T) the equation relating the variables will contain
n — m dimensionless groups. Buckingham referred to these dimension-
less groups as II,, II,, etc., and the final equation obtained is

Hl = ¢(H23 H39 L Hn—m)

Thus in example 1.5 there are seven variables with three primary
dimensions so that the final equation

R 4 {p_VI vV vV }
PV~ 7 L /(Klp) +/(g)
is formed of four dimensionless groups.

DIMENSIONAL ANALYSIS 7



In the problem of example 1.6 there are six variables, F, p, d, v, 7
and n and three primary dimensions. The equation relating the variables
will therefore be formed of 6 — 3 = 3 dimensionless groups and will be

= ¢(Hz, II,

The dimensionless groups can be formed as follows:

(1) Choose a number of variables equal to the number of primary
dimensions and including all these dimensions, in this case F, p and v.

(2) Form dimensionless groups by combining the variables selected
in (1) with each of the others in turn.

Combining F, p and » with d to form a dimensionless group:

F

iy, = pv?d?
- : Fn?
Combining F, p and v withn, II; = ey
i ; Fp
Combining F, p and v with y, II; = &

Since ' I'I1 = ¢(Il,, I

Fn2 F
vzda =¢(—f ) )

The groups can be rearranged to obtain the desired form by cross-
multiplying. Rewrite equation (1) as

F Fn?\ ¢ (Fp\®
;;5;1—2- = ? ;—2 X constant

-a-b
Multiplying both sides by (P—v%;) gives

F 1-a-b Fnz vzdz a F 2d2 b
(,o ) = L ) ( = le ) X constant

pv?d? vt F F
F l1-a-b dn 2a u
(}W) = (';') (p—d) X constant
A # {d" K }
pvid? v pvd
Problems

1 Show that the frictional torque L required to rotate a disc of
diameter d at an angular velocity w in a fluid of viscosity x4 and

density p is given by
L _ g pd*w
d’w’p u

8 SOLVING PROBLEMS IN FLUID MECHANICS



2 The rate of flow Q of a gas through a sharp-edged orifice
depends on the diameter d of the orifice, the difference in
pressure P between the two sides of the orifice, the density p and
the kinematic viscosity v of the gas. Show by the method of

dimensions that
_pf( |2 L P
Q=d <\/p>¢{d\/1’}

3 Show that the power P developed by a hydraulic turbine is
given by

2 2
P = pN*D*¢ {ND }

gH

where p is the mass density of the fluid, /N the speed of rotation,
D the diameter of the rotor and H the available head.

4 Define viscosity and state the units in which it is measured.
Show by applying the principle of dimensional homogeneity that
the resistance to motion of a sphere through a viscous fluid is
given by R = Kudv where u is the viscosity; d the diameter of the
sphere; v the velocity; and K a numerical coefficient.

5 Assuming that for turbulent flow in a rough pipe the
resistance per unit area of solid boundary 7 is dependent upon the
viscosity u, the density p, the velocity V of the fluid, the diameter
D of the pipe and the size of roughness k, show that

T " VDp k
pv: u 'D

6 In the rotation of similar discs in a fluid in which the motion
of the fluid is turbulent, show by the method of dimensions that a
rational formula for the frictional torque M of a disc of diameter
D rotating at speed N in a fluid of viscosity 4 and density p is

M = D’N? )2
2o <D 2Np>

7 Derive a general expression for the resistance to motion of a
partially submerged body through a liquid in terms of the Froude
and Reynolds numbers. How is this expression used to compare
the resistance of a ship model with the full-size ship? Explain the
assumptions usually made and quote experiments which justify
them.

Describe in detail either (@) the production of a ship model; or
(b) amethod of measuring the resistance force when the model is
towed through still water.

8 Describe, with the help of diagrams, the operation of a film
lubricated journal bearing.

Specify the conditions necessary for strict geometrical similarity
and show, by using the method of dimensions, that if
temperature effects are neglected, the moment of frictional

DIMENSIONAL ANALYSIS 9



resistance for geometrically similar journal bearings can be
expressed by

M = uND*¢ <;£V >
P
where u is the viscosity of the lubricant, N is the speed of journal
rotation, P is the load per unit projected area and D is the
diameter of the journal.
Hence show that the moment of frictional resistance for all
geometrically similar bearings running at “corresponding
speeds” is proportional to PD?.

9 Prove that the viscous resistance F of a sphere of diameter d,
moving at constant speed v through a fluid of density p and
viscosity u, may be expressed as

-2 ()
AV

Show that Stokes’ result for low velocities, F = 3muvd, is in
agreement with this general formula.

A sample of emery powder was shaken in water contained in a
glass beaker and then allowed to settle. It was found that the
water cleared in 1 min 40 s when the depth was 18 cm. Calculate
the minimum diameter of the particles, assuming them all
spherical and taking the specific gravity of emery as 40 and the
coefficient of viscosity of water as 0012 poise.

Answer 0-00364 cm

10 Prove that the total resistance R to flow in a length / of a pipe
of diameter d is given by

u
R = ldv? ——
o <pvd>
where p is the density of the fluid and v its mean velocity. From
the above equation show that the loss of head 4 in a length / of a
pipe can be expressed as k/v"/d*~". Show that this can be applied
to viscous flow if » = 1 and k = 32 u/pg.

11 The discharge through a small orifice is dependent upon the
head over the orifice H, the gravitational acceleration g, the
diameter of the orifice D, the viscosity u, the density p, the sur-
face tension o of the fluid and the roughness k. Find the dimen-
sionless groups upon which the coefficient of discharge depends.

pDJVEH) D o k

Answer i "H pgH' H
12 Show, by applying the method of dimensions, that a rational
formula for the resistance of geometrically similar bodies mov-
ing, partially submerged, with uniform velocity ¥ in a fluid hav-
ing density p and viscosity u is R = pL*V?. ¢(N,F) where N
denotes the Reynolds number and F denotes the Froude number.
State the particular forms of resistance associated with each of
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