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PREFACE

In recent years there has been much research activity concerning the
oscillation of solutions of delay differential equations. To a large extent, this
is due to the realization that delay differential equations are important in
applications. New applications which involve delay differential equations
continue to arise with increasing frequency in the modelling of diverse
phenomena in physics, biology, ecology, and physiology.

Our aim in this monograph is to present in a systematic way the most
important recent contributions in oscillation theory of delay differential
equations. We will also apply the oscillation theory to several equations in
mathematical biology to obtain the oscillatory character of their solutions.

There is no doubt that some of the recent developments in oscillation
theory have contributed a beautiful body of knowledge in the field of
differential equations that has enhanced our understanding of the qualitative
behaviour of their solutions and has some nice applications in mathematical
biology and other fields.

This monograph contains some recent important developments in the
oscillation theory of delay differential equations with some applications to
mathematical biology. Our intention is to expose the reader to the frontiers
of the subject and to formulate some important open problems that remain
to be solved in this area.

Chapter 1 contains some basic definitions and results which are used
throughout the book. In this sense, this is a self-contained monograph.
Chapter 2 deals with the basic oscillation theory of linear scalar delay
differential equations. In Chapter 3 we introduce a generalized characteristic
equation and then use it to establish comparison theorems, to prove the
existence of a positive solution and also to obtain general oscillation results
for delay equations with variable coefficients and variable delays. In Chapter
4 we present a linearized oscillation result and then apply it to some models
in mathematical biology. Chapter 5 deals with the oscillation of linear and
nonlinear systems of delay differential equations. In Chapter 6 we develop
the oscillation of solutions of neutral differential equations. Chapter 7 deals
with the oscillation of delay difference equations. The oscillation of equations
with piecewise constant arguments is treated in Chapter 8. In Chapter 9 we
present some oscillation results for integrodifferential equations. Chapter 10
contains some oscillation results for equations of higher order. In Chapter
11 we study the asymptotic behaviour of both the oscillatory and non-
oscillatory solutions of some equations, mostly from mathematical biology,
and obtain results about the global attractivity of their respective steady
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states. Finally, Chapter 12 contains some miscellaneous topics, including
some results on slowly oscillating periodic solutions, rapidly oscillating
solutions, and oscillations of solutions of differential equations with periodic
coefficients.

At the end of every chapter we have included some notes and references
about the material presented and we briefly discuss other related develop-
ments. We also present some open problems which are worth investigating
and which will stimulate further interest in this subject.

Szeged L
Kingston G.
1991

G.
L.
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1
PRELIMINARIES

Oscillation theory begins in Chapter 2. The aim in this chapter is to present
some preliminary results which will be used throughout the book. In this
respect, this is almost a self-contained -monograph. The reader may glance
at the material covered in this chapter and then proceed to Chapter 2.

Section 1.1 contains a detailed description of all possible global existence
and uniqueness results that are needed in our treatment of the oscillation
theory of delay and neutral delay differential equations. Of particular
importance is to understand what we mean by a solution of an equation.
See Definitions 1.1.1(c) and 1.1.2(c). In Section 1.2 we prove that the solutions
of linear autonomous differential equations are exponentially bounded. We
need this property of solutions because in Sections 2.1, 5.1, and 6.3 we take
their Laplace transforms. In Section 1.3 we present some basic properties of
Laplace transforms. In Sections 2.1, 5.1, and 6.3 we use Laplace transforms
to present some basic necessary and sufficient conditions for the oscillation
of all solutions of linear autonomous differential equations. In Section 1.4
we introduce the z-transform, which is the discrete analogue of the Laplace
transform. This transform is used in Section 7.1 to give a powerful necessary
and sufficient condition for the oscillation of all solutions of linear autono-
mous systems of difference equations. Section 1.5 contains several basic
lemmas from analysis that we use on several occasions throughout this
monograph. In Section 1.6 we include some basic results on differential
inequalities whose use will simplify considerably the proofs of several
theorems. Section 1.7 states some useful theorems from analysis that are
needed in this monograph.

1.1 Some basic existence and uniqueness theorems

This section is written for the reader who is not familiar with the existence
and uniqueness theory of delay and of neutral delay differential equations
which is discussed in specialized books such as Bellman and Cooke (1963),
Driver (1977), Hale (1977), and Myskis (1972). Here we emphasize the global
existence and uniqueness theorems, because in oscillation theory the solutions
are assumed to exist on an infinite interval [¢,, o0). See Definitions 1.1.1(c),
1.1.2(c), and Remark 1.1.1.
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Consider the delay differential system
x(t) + [, x(2), x(t — 7,(2)), ..., x(t — 1,(t))) =0, (1:1.1)
where for some £, € R and some positive integer m,
feCllfy,©) x R" x ---x R, R™] and ;€ C[[fy ), R*]
fori=1,2,...,n, (1.1.2)
with
lim [t — t4(t)] = oo, fori=1,2,. ..M (1.1.3)

t— o0

For every ‘initial point’ t, > £, we define t_, = t_,(t,) to be

t_, = min {inf {t— r,.(t)}}. (1.1.4)
1<isn 210
As we see, t_, depends on the delays 7,(t) of the differential equation as well
as the point t,. The interval [¢_,, t,] is called the ‘initial interval’ associated
with the initial point t, and the delay differential equation (1.1.1).
With eqn (1.1.1) and with a given initial point t, > f, one associates an
‘initial condition’

x(t) = p(t) fort_, <t<t, (1.1.5)

where ¢: [t_,, t,] —» R™is a given ‘initial function’.

Definition 1.1.1.

(a) A function x is said to be a solution of eqn (1.1.1) on the interval I, where I is
of the form [to, T), [to, T1, or [to, ), withto <ty < T, if x: [t_;,to] U I > R™
is continuous, x is continuously differentiable for t € I and x satisfies eqn (1.1.1)
foralltel.

(b) A function x is said to be a solution of the initial value problem (1.1.1)
and (1.1.5) on the interval I, where I is of the form [t,, T), [to, T, or [te, o),
if x is a solution of eqn (1.1.1) on the interval I and x satisfies (1.1.5).

(c) A function x is said to be a solution of eqn (1.1.1) if for some to > t,, x
is a solution of eqn (1.1.1) on the interval [t,, ).

(d) A function x is said to be a solution of the initial value problem (1.1.1)
and (1.1.5) if x is a solution of eqn (1.1.1) on the interval [t,, 00) and x satisfies
(1.1.5).

Throughout this book, unless otherwise specified, for any m-dimensional
vector x = (xy, ..., x,,)T € R™, | x| denotes any vector norm. For any m x m
real matrix A, the associated matrix norm is then defined by |A4| =
max, .= Ax|.
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The following result, which is known as Gronwall’s inequality, is needed
in the proof of uniqueness theorems. For a proof see Driver (1977).

Lemma 1.1.1 (Gronwall’s Inequality). Let I = [t,, T) be an interval of real
numbers and suppose that

ut) <c+ J' v(s)u(s) ds fortel

to

where
c e [0, o0) and u,ve C[I,R*].
Then

ut) <c exp(J‘ v(s) ds) fortel.

0

The following result is the basic global existence and uniqueness theorem
for delay differential systems.

Theorem 1.1.1. In addition to conditions (1.1.2) and (1.1.3) assume that there
exists. a function pe C[[ty, ), R*] such that for all t >1t, and for all
X, yi€R™ for i=0,1,...,n, the function f satisfies the following global
Lipschitz condition:

I£(8 X5 X15 - -+ 5 Xp) = S (& Yos Y15 - - - » YWl < P(B) i‘, llx; — yill- (1.1.6)
i=0

Let to > i, and ¢ € C[[t_,, to], R™] be given. Then the initial value problem
(1.1.1) and (1.1.5) has exactly one solution in the interval [t,, o).

Sketch of the Proof. Define the operator T on continuous functions
y:[t-y, 00) > R™ by

@y = PO st

b(to) + J S5 ¥(5) y(s — T4(5)), .., Y(s — () ds, £ >t

to

Clearly (Ty)(t) is a continuous function on [f_,, o). We now define the
following sequence of functions:

s {¢(t),

t
¢(t0)’ t > tO
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and
X1 = Ix; for1=0,1,2,....

By using (1.1.6) one can show (as in Picard’s method of successive approx-
imations) that
(t—to)
I

1,41 () — x, (DI < M(2) fort>t_,andl=0,1,...,

where M(t) = max, <<, p(s). It follows that
x(t) = lim x,(t) = Y. [x%41(8) — x,(8)] + Xo(2)
- 1=0

exists for all £t > t_,, and x is a solution of the initial value problem (1.1.1)
and (1.1.5) on [t,, ).

To show uniqueness, we assume that x and y are two solutions of (1.1.1)
and (1.1.5) on the interval [¢,, o). Then x(t) = y(¢) for t_; <t < t,. Set

u(t) = max [|x(s) — y(s)ll.

toSs<t

Clearly
() < (n + 1) J ps)u(s)ds  fort > 1,
to

and by Gronwall’s inequality (with ¢ = 0) it follows that u(t) = 0 for t > t,,
Hence x(t) = y(t) for t > t, and the proof is complete.

Corollary 1.1.1. Consider the linear non-autonomous delay system
X(t) + Po(0)x(t) + Y P()x(t — 1)) = 0 (1.1.7)
i=1

where for some t, € R and some positive integer m,
P, e C[[£,, 0], R™*™] Jor i =015 0505
7, € C[[fo, ), R*] and lim[t—t()]=o0 fori=1,2,...,n.

t— oo

Let tq >ty and ¢ € C[[t_,, to], R™] be given. Then the initial value problem
(1.1.7) and (1.1.5) has exactly one solution in the interval [t,, o).

Corollary 1.1.2. Consider the linear autonomous delay system

X(1) + Pox(t) + 2 Px(t —1) =0, (1.1.8)

13
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where for i =0,1,...,n the coefficients P; are real m x m matrices and for
i=1,2,...,n the delays t; are non-negative real numbers. Then for every
to € R and for every ¢ € C[[t_,, to], R™], where t _; =ty — max{t, ,,...,T,},
the initial value problem (1.1.8) and (1.1.5) has exactly one solution in the
interval [t,, o0).

When the function fin eqn (1.1.1) does not depend explicitly on x(t) and
when the delays 7,(¢) are all positive, one can establish a global existence
theorem for eqn (1.1.1) without the assumption that the Lipschitz condition
(1.1.6) holds. This is accomplished by utilizing the so-called method of steps.
In fact we shall now utilize the method of steps to obtain a global existence
theorem for a differential system of a more general form, namely, for the
so-called neutral delay differential system

% [x(t) + g(t, x(t — 7,(2)), ..., x(t — 7,(t)))]
+f(t, x(t — 0,(2)), ..., x(t —0,(t))) =0 (1.1.9)
where for some 7, € R and some positive integer m,
geC[[ty ) x R™ x - -+ x R™, R™], (1.1.10)
feC[[to, ) x R™ x - - - x R™ R™], (1.1.11)
andfori=1,...,landj=1,...,n

%€ Cllfe, ), 0, 0)}, ;€ Cllfo, 0}, O, o) and | ) 1

lim [t — ()] = o0 = lim [t — o/(£)].

t— o t— o0

For a given initial point t, > f,, we now define t_, to be

t_q =min{min {inf {t—ri(t)}}, min {inf {t—aj(t)}}}}. (1.1.13)
1<is<l 210 1sjsn 210

With eqn (1.1.9) we also associate the initial condition
x(t) = ¢(t) fort_, <t<t, (1.1.14)

where ¢: [t_,, t,] - R™ is a given initial function.

Definition 1.1.2.

(a) A function x is said to be a solution on the interval I, where I is of the
Jorm [to, T), [to, T], or [ty, ) with tg <to < T, if x:[t_i,te] U I - R™ is
continuous, x(t) + g(t, x(t — t,(t)), ..., x(t — 7,(t))) is continuously differen-
tiable for t € I and x satisfies eqn (1.1.9) for all t e I.

(b) A function x is said to be a solution of the initial value problem (1.1.9)



