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Preface

D he material in this “how-to” book builds upon a
first course in classical control. Appropriate concepts from
modern control are used. Explanations are based upon the
author’s insight and intuition gained through his experience with
dynamical systems. In particular, the author tries to show how
error compensation networks are developed. In most classical
control courses, this topic is usually scheduled near the end,
which often means it is not covered. This problem is addressed
directly -here because the subject of error compensation unifies
the presentations in the book.

Frequency domain analysis herein is limited to pole assign-
ment. Time domain analysis through numerical simulation
dominates the presentation. In linear systems, the solution to the
eigenvalue problem gives only a glimpse of the system response.
In large systems, we can determine stability and a bit about
oscillatory behavior. The usual worth of a picture — 1000 words
— certainly holds true here. In nonlinear systems, numerical
simulation may be the only available tool. The first system in
Chapter 3 is nonlinear and emphasizes this. This is also true for
linear digital systems where the sampling frequency is only two
to five times greater than the highest system frequency. Such
cases are described in Chapter 5. Frequency domain analysis for

(xv)
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digital systems generally provides only little insight into the
transient behavior of the system. The situation becomes virtually
intractable when one tries this approach to evaluate the robustness
of the system.

The material in Chapter 6 on the error observer has not been
published or described before. Beyond its novelty, the error
observer establishes a neat connection between classical control
and modern control.

Chapter 3 is similar to “Synthesis and Design of Feedback
Control Systems for Time Response 1” presented at the American
Control Conference in 1984 and printed in the Proceedings,
pp 1332-1337. These proceedings are copyrighted by American
Automatic Control Council and are distributed through IEEE
Service Center, 445 Hoes Lane, Piscataway, NJ 08854.

Clarence J. Maday
Raleigh, NC



CHAPTER D

Introduction

[H] istorical accounts trace the use of self-regulating
or feedback control systems at least as early as the third century
B:C. Given the ingenuity of man, we can conjecture that earlier
uses may have gone unnoticed because the inventor neglected to
document such efforts. The recorded history of automatic
control, however, is fascinating, and the interested reader can
refer to one of the available monographs for a detailed account.
We note only that today we tend to think primarily in terms of
classical control and modern control. The topic usually called
classical control was developed in a period that extended from
the late 1930s to the early 1950%. Pontryagin’s Maximum
Principle renewed interest in state-space methods, and the
general availability of high speed digital computers contributed
to the development of what is called modern control theory. It
has been noted in the literature that the term modern may be
somewhat inappropriate because state-space or state variable
techniques date back to the work of Poincare, Gibbs and
Lyapunov around the beginning of this century. Nonetheless, the
application of these methods to the analysis of control systems
has proven to be valuable, and there is every indication that new
developments will continue. It is generally agreed that modern
control includes the state variable methods just indicated, as well
as optimal control and digital control. (i



(2) INTRODUCTION

Optimal control has given us the linear quadratric regulator
(LQR), and its counterpart, the linear quadratic servomechanism,
both of which use complete state feedback. Difficulties are
encountered when one or more of the states are inaccessible,
i.e., they cannot be measured in the physical setting. The concept
of the observer, which synthesized the missing states, was put
forward to overcome this problem.

Digital control or sampled-data systems experienced a surge
of interest during the 1950’s when much of the theory was
developed. Interest in these systems is renewed at the time of this
writing because of the availability of very high speed micro-
processors. Moreover, digital systems offer the potential of
handling numbers with precision and with accuracy.

The need for feedback in electromechanical systems, chemical
process control, aerospace guidance systems, internal combustion
engines, and precision machining is accepted today. Feedback
control systems are widely used and may be taken for granted. In
view of this, it seems appropriate to reexamine the purpose of a
feedback controller and to question our expectations of such a
system. In short, what do we expect of an automatic feedback
control system? For single-input, single-output (SISO) systems
we expect the feedback system to be better than the sum of its
constituent components. That is, the closed-loop performance of
a controller should be superior to its open-loop performance. We
expect also that the system will track faithfully any reasonable
input command. Moreover, it should continue to perform well
with approximate models of physical systems, and it should be
insensitive to external disturbances; that is, it should be robust.

Let us consider a seemingly simple example that highlights
these requirements and also serves to introduce more sophisticated
concepts. The temperature control of a house is the example.
The control element is an on-off heating/ cooling device controlled
by a thermostat, which is also an on-off device, often with a
thermal anticipatory provision. The model of the house is
generally taken to be a first-order one whose elements are known
only approximately. Outdoor temperature variations and opened
doors and windows are external and usually unpredictable
disturbances. Yet the system works well even if it does not lend
itself to linear analysis. We keep in mind the on-off character of
the controller as a desirable feature for a controller because this



