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Preface

This book is about two special topics in rheological fluid mechanics:
the elasticity of liquids and asymptotic theories of constitutive
models. The major emphasis of the book is on the mathematical and
physical consequences of the elasticity of liquids; seventesn of
twenty chapters are devoted to this. Constitutive models which are
instantaneously elastic can lead to some hyperbolicity in the
dynamics of flow, waves of vorticity into rest (known as shear
waves), to shock waves of vorticity or velocity, to steady flows of
transonic type or to short wave instabilities which lead to ill-posed
problems. Other kinds of models, with small Newtonian
viscosities, give rise te perturbed instantaneous elasticity, associated
with smoothing of discontinuities as in gas dynamics.

There is no doubt that liquids will respond like elastic solids to
impulses which are very ranid compared to the time it takes for the
molecular order associated with short range forces in the liquid, to
relax. After this, all liquids look viscous with signals propagating
by diffusion rather than by waves. For small molecules this time of
relaxation is estimated as 10-13 to 10-10 seconds depending on the
fluids. Waves associated with such liquids move with speeds of
105 cm/s, or even faster. For engineering applications the
instantaneous elasticity of these fluids is of little interest; the practical
dynamics is governed by diffusion, say, by the Navier-Stokes
equations. On the other hand, there are other liquids which are
known to have much longer times of relaxation. Polymers mixed in
Newtonian solvents and polymer melts, like high viscosity silicone
oils or molten plastics, are examples. "The longest times of
relaxation for these liquids are of practical interest; times we cangead

* on our clock, of the order of milliseconds to minutes, or longer.

The study of hyperbolic dynamics is complicated by the presence of
many relaxation times. The limiting wave speed is determined by
the fastest rather than by the slowest relaxation so that the
instantaneous elastic response has already begun before the slow
relaxation has begun. The fast relaxation of small molecules gives
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rise to an effective viscosity which smooths slow waves. If the total
viscosity is much greater than the effective viscosity we may
consider the theory of perturbed elasticity, with relatively small
effective rigidities associated with the long lasting relaxations. The
effective wave speeds are slow, ranging roughly from 1 to 1000
cm/sec. '

It follows from what has been said that the models which are
instanianeously elastic and give rise to hyperbolicity and change of
type : re precise only for times too short for applications. For the
applications, the effective theory appears to work well but not all
issues have been resolved. One question is what type of theory may
be developed when the effective viscosity is not just a small part of
the total. A second question is to what extent we may expect robust
values of the effective quantities which are not dependent on flow
conditions. It is probable that the success{ul resolution of these
issues will depend more on experiments than on theory.

The contents of the seventeen chapters on the elasticity of ligiids
is taken from relatively recent papers not before collected into one
volume,

The three chapters on asymptotic theory treat some well-known
things in a new way. In 15 I review theories of fading memory and
show how different theories will lead to different types of
constitutive equations. Various types of perturbation theories are
considered in detail in 16. In 17 I deal with second order theory
emphasizing features which I consider fundamental like the balance
of inertia . 1d normal stress effects, the persistence of normal stress,
the correlation between extensional viscosity and the intensity cf
secondary motion, the importance of nonelastic contributions to
extensional and secondary motions and the general rheometrical
problem of determining values of the quadratic constants.

I have tried to avoid repeating things which are well expressed in
other books listed in the references. Since only special topics are
treated, this book cannot be used as a general reference, but for

many of the special topics treated it is effectively the only reference.

Some complementary results for wave propagation in viscoelastic
-naterials and many results about existence and uniqueness of
solutions for one-dimensional models can be found in the book by
Renardy, Hrusa, and Nohel [1987].

|
é
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Finally I want to acknowledge the help I have received from
Michael Renardy and Jean Claude Saut in Joint works, separate
works, and discussions, and Edward Fraenkel for his contributions

- to the solution of the problem of flow over a flat plate. Mark

Ahrens, Kangping Chen, Howard Hu, Amitabh Narain, Luigi
Preziosi, Oliver Riccius, and Claude Verdier helped me in different
ways but especially doing the research reported in this book.
Special thanks are due to Verdier and Hu for proofreading and to Hu
for his help with the calculation in §5.8. Eric Scouten did the initial
word processing of the manuscript and Lee Revnolds carried
through revisions and formatted the text as it appears. My work has
been supported for many years by the division of mathematics of the
Army Research Office and division of fluid mechanics of the
National Science Foundation.
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1

‘1.1 The Maxwell element

¢

We can build a very sophisticated nonlinear invariant theory from
springs and dashpots. A spring and dashpot in series is called a
Maxwell element (Figure 1.1). The spring constant is called G and

the force oy in the spring is Gy where v is the displacement of the
spring. The force o2 in the dashpot is N(2Y/A1)2 where M is the
viscosity and (9y/dt), is the velocity, the time rate of change of v,
and because they are in series, 61=072=0.




2 1. Models Likc Maxwell's and Bolizmann®s

2
AAAAR]
NANANNY
N\ NNAN

ANAN

A

AN

NNAN
NANANN
NANNNAN

Figure 1.1.  Maxwell clement. The force o1 in the spring is the same as 67,

the force in the dashpot.

We also have that the time rate of change of the otal displacement

is
ay ’87) (87’) (do/dt); o3 (do/dt) o
== = | = ——— 3 == + — . 1
ot (at L\, TG n G T, )
Hence,
0
AS +o=n %YY @

where A = 1/G is a relaxation time. Another expression for ¢ is
t

n —(t-T))oy(1)
== | exp|—=2 |20 4¢
GKJCKP(KJM T (3)

—c0

Obviously (2) is a differential equation model for the relation
between force and deformation and (3) is an integral mode! showing
that the present value of the force 6(t) is determined by the history of
Y.

1.2. Stress relaxation and instantaneous elasticity 3
1.2  Stress relaxation and instantaneous elasticity

Equation (2) is the constitutive equation for the Maxwell element. It
will support a force with constant deformation ¥£0, ay/ot=0 and
o = 6(0) exp(~t/A) . 4)

Eventually o relaxes to zero. We can regard o(x,t) as a stress and
y(x,t) as a strain. We say that the Maxwell element l-xas
instantaneous elasticity. At t=0, we increase y suddenly, producing
a stress. Then we keep 7y constant and the stress relaxes.

1.3 A one-dimensional model in the linearized case

Let

9&(x.t) 5)
Y= "9 (
be the strain, where
%_ (6)
3=
is the velocity. Then .
dy _du(x,t) 7
ot~ ox ,
and |
dc . du 8
}\. '8? +Q0= n ax . ( )
The equation of motion is
du Jo 9)
Poar =ox (

We may combine (8) and (9)
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u 1du_m o%
a2 +7& ot T paox2’ (10)

Equation (10) is a telegraph equation. Recall that G=n/A. The
telegraph equation is a wave equation,

% = g% . (n
perturbed by
o a2
where

Is the wave speed. If du/dx is a longitudinal strain, ¢ is the sound
speed. If Qu/dx is a shear strain, c is the speed of a shear wave.
For incompressible fluids, the sound speeds are infinite. In liquids,
it is more inieresting to consider shear waves.

Fluids with long times of relaxation are very nearly elastic; those
with short times of relaxation are very nearly viscous.

Suppose A—0, then

0
o=ng (14)
and
du 9%y
P§='ﬂw, (15)

which are the equations of a Newtonian fluid. If, on the other hand,
A—oo, then

00 ) Y
=05 o 0=G5 (16)

is elastic.

1.4. Hyperbolicity, characteristics
1.4 Hyperbolicity, characteristics

Equation (15) is parabolic and equation. 11 is hype'rb(.)tl‘xcc;
Hyperbolic equations allow wave propagation of dlsC(.)nu‘n'm‘ 1b :
without smoothing. Parabolic problems smooth discontinuities Dy

diffusion. . ‘ - N 1
The telegraph cquation is hyperbolic. To see this, look ut the

system (8) and (9)
)\.0[ -Nux=-60, |
pug - Ox = 0 (17) -
and ask if there are lines 6(x,0)=0 across which the derivatives of u
and G are discontinuous with continuity for u and ©. We form
3 < D

equations for the jumnps of the derivatives across these lines and get

AloJ - nlud =-[al,

plud -loJ=0. (18)
According to our set-up, © and u are continuous on ¢=0; hence,
[ul =0cl = 0 on o(xn)= 0. (19)

All the tangential derivatives of [ul=0 and [o]=0 also vanish and
the only derivatives of [ul=0 and [51=0 are normal 1o ¢. Hence,

for example,
Lol =Loolor .
Since d¢ = 6 dt+0xdx = 0, we may reduce (18) 10

Aloel %+ nluel =0,

[ool + pluel %’[5 =0. Q0)

We can solve (20) for [[O'q)]] and [[Ll¢]] if
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(13(_
dt dx\2
d o (4
et o ~7&p(d[) n=0. Q1)
Par

There are two families of characteristics defined by (21)
X ¢t = const (22)
where ¢ is the wave speed (13).

1.5 Linearized Maxwell models

We make a tensorial i
S equation of (17) by declaring th: is ¢
symmetric tensor field g g o

ox.n =cT(x,0), (23)
u(x,t) is a solenoidal vector field satisfying
divu =0 (24)
and du/dx now stands for
def
2D[u] =Aq[u]’

def

where D{u] stands for the symmetric part of L{x,t) =Vu

(Lij=0ui/0x;). The constitutive equation of the r.

(17) is ate type generalizing

ot
A 5 tFT= 21 Dlu] (26)
where 7 is called the extra stress and p is the reaction pressure. The

equation expressing the balan i
ce of mass is (24) s ,
momentum is (24) and the balance of

d
P a-l: = —Vp +divT 27

1.5. Lincarized Maxwcell models 7

where the reaction pressure p=plu] may be determined as @
functional of u by the solution of the four equations (27) and (24)
for the three components of u and pju]. The reaction pressure is not
detecrmined by & constitutive expression, it varies from problent to
problem, as iri an incompressible Newtonian fluid.

1.6 Nonlincar Maxwell models

By declaration, we shall cull fluids which obcy a constitutive
equation of the rate type '

A (28)

Maxwell models. These models are not unique; they differ in that
various invariant derivatives DT/Dtcan be defined. Up to now we
did not consider invariance.  In fact all the invariant nonlinear
derivative  reduce to partial rime derivatives when lincarized at states
of rest,

Nt ot
o ¢
I o (29)

1.7 Form invariance and frame indifference

Many peopie belicve that because constitutive equations characterize
tiie response of the material they ought to be independent of the
observer: two observers on different planets, or on different
turntables on the same planet should come up with, say, the same
equation relating stress and deformation and their equation should
rrot depend on the frame. There are actually two requirements stated
here. The first is that equations should be form invariant under
Euclidean transformations (30) representing the change of frame.
‘The second is that the invariant form should be independent of
frame.

Suppose that the frame of the star observer at X* is in a rigid
motion so that
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x" = Q)x + b(t) (30)

where b(t) is a time dependent constant and Q(1) is an orthogonal
tensor which rotates vectors™; Q-1(t)=QT(1), QQT=1 and x is the
point you see in your frame.

Our * observer studies some material which we think satisfies
(28), and we will think him clever if he finds that

x

D*t

A +7T" =2nD*[u"] 31)

where the * objects have the same form as in (28). Forexample,

2D* = V5 4 (V*ahT

Now we know that the rate of strain IS an indiffesent tensor:
under a change of frame (30), it transforms like an ordinary tensor

D*[u*] = QD[uIQT() . (33)
Actually,
L™(x",t) = QuLx,0Q7(1) + Qu]
where
Q= d—Qd[(—‘) QT = QT ()

is an antisymmetric tensor (because QQT=1), does not transform as
an indifferent tensor; but L+LT does. We are going to ussime that
the-extra stress is an indifferent tensor

* . .
If Q(t) is a rotation around, say, x3, then the components of Q(1) in

coordinates (x}.x2.x3) arc given by
cos8 sin6 0
QM) = -sin® cos6 0
0 0 1

where 0=0(1).

1.7. Form invariance and frame indifference 9
T ("0 = Q)T(x,0Q (1) . (35
Jezce, our constitative equation will beform invarnt if we can:

find sone invarant derivatives satisfying” - =

DT DT,
e =00 Ig'(ﬂu‘ {3y)
1135 and (36) hold. then f L i
BN AR - /
AT b
N O S
:Q”.’fxﬁ{"' T-2nDjui Gl (37)
=0

and all the observers are in agreement about the Torm of ihe
constitative equation. Indifferent constitaune equ.t ons are form
mvariant but they may depend on the trame (¢f. Excrone 1,123,

The belief that constitutive equations should not depend on the
frame is called the “principle of material trame indifference.”
Perhaps it is stated as a principle because many people belicve in it
strongly even though they can’t prove it. It scems that the exact
circumstances under which dynamics give rise to ¢onstitutive
equations whi h are independent of frame is a largely unexplored
topic at the foundation of continuum mechanics. For a fuller
discussion of these issues, see Joseph and Preziosi, *Addendum 10
the paper ‘Heat Waves.””

1.8 Frame independent invariant derivatives

A properly invariant tensor rate can be obtained if we interpret the
rate operator as the time derivative d/0t with respect to a reference
frame suitably fixed to the body* Different choices of body-fixed
frames 1n this inrex'pr§’tation yield differert invariant tensor rates.
We present two examples in Equations (40) and (46) below.

{

1
1.

Oldroyd, J.G. On the formulation of rheological cquations of state. Proc.

R. Soc., London A200, 523-41. A complete cxposition of Oldroyd's
approach to constitutive modcling is developed by Lodge [1974).
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1.9 Upper convected invariant derivatives

To facilitate the presentation of the body-fixed frames in these
examples, we cover the body with a convected coordinate system ZF.
(A convected coordinate system deforms with the body so that the
coordinates (E1.£2,E3) associat u with a particular material point do
not change with time.) Base vectors g at & material point are
defined by

Les %”)*'-x(é’ £23 (38)

J

where x(§1,E2,E3,1) is the position vector at time t of the matciial
point with convected coordinates (1.52,53). A 3-D tensor M nin
be expressed with respect to the basis g ® g

M(E.1) = MU0 gi(§.0) ® gi(&,0 (39)

v

where & is shorthand for the convected label (31.22.23) of the

material point.

The frame at the material point with basis {gy.g>.¢3] rotates and
deforms with the neighborhood of the point. As our first choice of
invariant tensor rate, we define the rate of tensor M to be the time
derivative of M with respect to this body fixed frame: explicitly.

D def Jd. .
o M= [BTM'J(&!)] gi(&n ® gk . (40)

The rate defined in Equation (40) differs from the materia] deriviive
M. .. . A
¢ Since it ignores the change of the base vectors g; widh ime,

We now remove the dependence on convected coordinates from
the rate definition, Equation (40). Taking the material derivative of
Equation (39) gives

dM rlcf 0 )
o = MG 0= [ MUE, t)J 260 ® gi§,n
+ Mi.i(ﬁ,t)[s—tg;(é,t)} ® gi(E.1) + MU(&:O 2§, 0 ® [%gj(é.l)] D

Ne note that

1.9. Upper convected invariant derivatives 1t

9L ko= at[ag x(&, z)] 0 [atx(ﬁ,t)]

=5giv(5v‘)=aax Vo) o LxE = Lei. (42)

Use of this result and the definition (40), in (41) gives, after some

arranging,
%M=d M _ i ILg; ® gj -~ Milg; ® Lg;
= S - L(Milg; © g)) - (Mg @ gL T “)
- M- MLT=M .

The definition of% M in Equation (40) is th-refore seen to be the

¢
upper convected rate, here denoted by M.

1.10 Lower convected invariant derivatives

Other body-fixed frames besides the frame with base vectors EJ can
' = defined. Reciprocal base vectors g! are defined by

g-gj=3, (44)

and we may express the tensor M as

MED =M€ giEn®gEn. (45)
As an alternative to Equation (40), we can define the rate of tensor
M by ‘
D
R =[G M 6] @ Bt (46)

This rate differs from the upper convected rate defined in Equation

(40) since the vectors gi deform in time differently than g;. In fact,
S

the rate defined in Equation (46) is the lower convected rate M,
given by



t2 L Madels Like Maxwell's and Boltzmann '~

A
M= d(;l + LM + ML 47)

ciseful in the anstormarion of equations (46) 10 (17 i relation

1,|dcl - e
%hh:%gl(i'“:”l"'gl‘ (J-\')

vinch follows from Equation (42) and the material deviva - of
cquation (44).

L1 Corotational imvart.nt derivatives

)
The corotational rate M., defined hy

O det

v \
M= J(M+ M) =

"':‘I' WAL MW

W=l (-10)

corresponds o the time dervative of M with Fespect 1o a bosis
which skares the rotition of the herzhborhood or the material point,
but not its deformation. :

.12 Other invariant derivatives

Another invariant rate is

— dcl'] A \

M=,M-M)=DM+ MD .

. v \ ; -
Hence the four rates M. M, M. and M are included as special cases
in the general rate
D . “tdM , .
B M= WM + MW _ 4(DM + MD) (50)
Dt dt
where a is constant. This rate satisfies invariance, expressed by
(36), and preserves symmetry (in the sense that the rate of a

1.12. Other invariant derivaiives 13

; : Cnecessardy v “tric all vidues of 4. The
; :tric tensor 1s necessandy  ymmetric) for all values of
symmetric tens et

choices a=1 -1, and O correspond .o M, M, and M. respectively
Some properly invarnant rates, such as

DT G e =M ML
p[“:{ap\‘;%@%) &

and
R ST HIL L T SV
oM *Lay‘,; MR g T

have the d sadvantage thet the rate of ¢ ymmetric wensor s notin
general symmetric.
1.13  List of Maxwell models

v . |
At +t=2nD  (upperconvected Max el model. U N 5]

A , o
AT+ T=2nD  dowerconvected Max el model, LOM (52)

O

AT+ T=2nD  (corotational Maxwell Made'. COM) (33
7\% +t=2nD (uierpoluted Maxwell kel (54)

Dt s
where D Is given by (30).

1.14 Invariam derivatives ol vectors

We may find mne  cr vatuves ol vectors wh ch are awvariun under
superposed rigid motons by Oldovd’s method. We may
. y : Cnal -

decompose the vecior a n the basis gi, - -ts dual gt

a=az = agh



