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Introduction

Volume 5 of this series contains the lectures delivered at the
Second Matscience Summer School conducted in Bangalore in Au-
gust, 1965.

Theoretical physics today occupies a privileged position in fun-
damental sciences for the obvious reason that it is closely related to
experimental physics on the one hand and draws its strength from
mathematical methods on the other. Studies in theoretical physics
at Matscience lay more emphasis on the mathematical aspects taking
care, of course, not to get away from the world of observation and
reality. In the second Matscience summer school, we had a fair
share of these mathematical methods presented in the lectures of
Grossmann on nested hilbert spaces, and Ranganathan and Teplitz
on the homology theory of Feynman integrals.

The lecture course by Oakes on weak interactions was the fifth
series on a subject dealt with earlier at our Institute by Marshak,
Takeda, Fujii, and Meyer, demonstrating the importance of a subject
in which the theoretical physicist has experienced as many triumphs
as failures. One of the interesting features of the summer school was
the lecture course on relativity by two representatives of the Paris
School, Kichenassamy and Baktavatsalou.

Our Institute supports and fosters the mathematician’s attitude
to other disciplines so well expressed by Marshall Stone in the
second volume of this series— “I try to help everyone, but I have
also my own concerns.” Professor Unni initiated a series of lectures
in the field of mathematics which will be a regular feature of future
scientific meetings at Matscience. With this motivation, the lectures
of Kelley and Arens, delivered later during the year, have also been
included in this volume.

Alladi Ramakrishnan
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Lectures on Nested Hilbert Spaces

ALEXANDER GROSSMANN*

MATSCIENCE
Madras, India

1. INTRODUCTION

In this paper, we shall be concerned with a class of vector
spaces that are convenient tools for the investigation of some ques-
tions in scattering and quantum field theory.

In a space of this kind, calculations are carried out in essential-
ly the same manner as in a Hilbert space, with the qualification
that products are defined only if certain initial and final subsets of
a partially ordered set have a non-empty intersection. On the other
hand, the gain in generality simplifies the language, e.g., in the
study of fields (which need not always be smeared), of unphysical
sheets and scattering states. Proofs and references can be found in
other papers by the author.t

2. ALGEBRAIC INDUCTIVE LIMIT

Let I be a partially ordered set. Assume that it satisfies the
following condition:

(I,): Any two elements in I have at least one common succes-
sor. That is, given any two elements g and r in I, there exists at
least one s in I such that s > r and s > ¢q. This will be written as

*Visiting scientist.
tComm. Math. Phys. 2: 1 (1966); 4: 190 (1967).
1



2 A. Grossmann

s >r,q. For every r € I, let V, be a vector space. Assume that the
spaces V, are mutually disjoint. For every r € I and every s such
that s > r, let E;, be a linear mapping from V, into V,. Assume the
following:

(Nsy)): E,, is injective, i.e., satisfies the condition that if E,, f,
=0, then f, = 0. Assume also that the family E,, satisfies the con-
ditions:

(Ind)): Foreveryre L E,, = 1 (Identity in V).

(Indy): If s > r > p, then E,, = E,,E,,.

The condition (Ns,) above is not necessary for the definition of
algebraic inductive limit. It will, however, always be satisfied in
the situations with which we are concerned.

Now consider the union of all the spaces V.. In this set, define
a relation f, ~ f; which means: There exists a common successor
s > r, g such that

Es'r_fr == Esqf;z (1)

It is easy to verify that this is an equivalence relation. The union
U ¥V, can be decomposed into classes with respect to this relation.

Tel

If (1) holds for some s > r, g, then it holds for every common
successor of r and of ¢. Indeed, let E,, f, = E,, f, and w >r, q. Let
z be any common successor of s and of w. Then, E.,f, = E,,E,, f,
= E.Ey fy = E.. f; Consequently, E., E,, f, = E., E,, f,. Since E,,
is injective, it follows that E,, f, = E,f;. If f, ~ f, and g, ~ g,,
then f, + g, ~ fo + g If f, ~ f; and ¢ is any complex number,
then @ f, ~ @ f;. Therefore, the set of classes forms a vector space.
This vector space will be denoted by ¥, and called the algebraic
inductive limit of the spaces V, with respect to E,, and I. In
symbols,

V= lim [Vr; Ear; I] (2)

For every r € I, there exists a natural embedding E;, of V,
into V;. If f, belongs to ¥, and f is the class of f,, we will write

f=Enf 3

and call f; the representative of fin V,. For every f € V,, we will
denote by J(f) the set of all r € I such that f has a representative
in V,. That is, r € J(f) means that f € E, V,. It follows directly
that J(f) is a final subset of 1. This means that if r € J(f) and
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s >r, then s € J(f). If f, and f; are representatives of fand s >r,
then

E.f =/ 4)
If fand g are any two vectors in ¥, then
J(f+8)=2Jd(f) n Jg) (5)

3. DEFINITION OF NESTED HILBERT SPACE

Let H, (r € I) be a family of Hilbert spaces. For the moment,
the spaces H, are considered to be mutually disjoint. Assume that
the index set [ satisfies the following conditions:

(1)): Any two elements in I have at least one common successor
(see Section 2).

(1,): In I, there is defined an order-reversing involution, i.e., a
one-to-one mapping r «—— 7 of I onto itself such that r =r (r € I)
and that 7 > § if and only if r < s.

(I,): There exists an element o € I such that 6 = o.

Elements of the Hilbert space H, will be denoted by f,, g., etc.;
a bounded operator from H, into H, is denoted by A,,. The scalar
product of f, € H, and g, € H, is denoted by (f;, g,); it is linear in
g- and antilinear in f,. The norm of f, € H, is denoted by | f;|. The
adjoint of the bounded operator A, will be denoted by (4,,)%. It is
the bounded operator from H; into H,, defined by

(&, (As)7s fs) = (Asr8r, 1)

for every f, € H, and every f; € H,. On the left-hand side of this
equation, the scalar product is in H,; on the right-hand side, the
scalar product is in H,.

We will now continue the definition of nested Hilbert space.
For every r € I and every s > r, let E,, be a linear mapping from
H, into H,. Assume that the conditions (Ns,), (Ind,), and (Ind,) of
Section 2 are satisfied. Assume further that E,, satisfies the follow-
ing conditions.

(Ns,): E,, is bounded (i.e., there exists a constant C such that
|Esr Il < CIf;|| for every f; € H).

(Ns;): The range of E,, is dense in H,. This means that if
(gs» Esr fy) = 0 for every f, € H,, then g, = 0.
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If a linear mapping E,, satisfies the conditions (Ns;), (Ns.), and
(Ns;) then its adjoint (E;,)f also satisfies these conditions.

Definition. Let I be a set that satifies the conditions (I,), (Iy),
and (I;). Let H, (r € I) be a family of Hilbert spaces and E,, (r € I,
s 2> r) be a family of linear mappings which satisfy the conditions
(Ns,), (Ns,), (Nss), (Ind,), and (Ind,). The algebraic inductive limit

HI = llm [Hr; Esr; I]

will be called a nested Hilbert space if the following conditions
are satisfied:

(NH,): If we let r and g be any two elements of I, then there
exists a p < r, g such that

EIpHp = EIqu N EH, (6)

(NH,): For every r € I, there exists a unitary mapping us
from H, onto H; such that

7 I | (7a)
Efs = Upr (Esr):suas (7b)
(relLLs>r)

4. SCALAR PRODUCT

Let H; be a nested Hilbert space and f be any vector in H,.
Consider the final subset J(f) < I defined at the end of Section 2.
It follows from (NH,) that J(f) has the following property: If r
J(f)and g € J(f), then there exists at least one p < r,q (a com-
mon predecessor of r and of g) such that pe J(f). Namely, one can
take the p defined by (6).

Let J(f) be the set of all » € I such that r belongs to J(f).
Therefore, J(f) is an initial subset of I, which contains at least
one common successor of any two of its elements. Let f and g be
two vectors in H;, such that the intersection J(f) n J(g) is not
empty. We shall show that the number («,; f7, g,) is independent of
the choice of » € J(f) N J(g). That is, if ¢ is any other element of
J(f) n J(g), then

(rs f7, &) = (Uqa f2r 80) (8)

To prove (8), notice first that there exist elements p and z in J(f)
N J(g), such that p < r, ¢ < z. Then, 7 <7, § < p and so, by (7a),
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(7b), and (4),
(ff, ufrgr) = (Eizfz, Usr Erpgp) . ((Ezr);kzuzifz', Erpgzz)

= (U2 f2s E2p8p) = U2z f2, 82)
Similarly,

(fas Uae80) = (us: [ &2)
which proves (8).

The elements p and z have to lie in J(f) n J(g) because other-
wise the representatives f; and g, would not exist. The number (8)
will be denoted by < f|g)> and called the scalar product of f and of
g. Therefore, the scalar product { f|g)> is defined if and only if the
vectors f and g satisfy the condition that J(f) n J(g) is not empty.
It is easy to verify that {g| ) is defined if and only if {f|g) is,
and that {g|f) is the complex conjugate of { f|g). It is trivial that

glof> = olelf> = {p*glf>

for every complex number. It is a little more difficult to verify the
following: If f, g, h are such that { f|k) and {g|h) are defined, then
{f + g|h) is also defined. Namely, if J(f) n J(k) and J(g) N J(h)
are not empty, then one still has to worry about the possibility
that J(f) n J(g) N J(k) might be empty. Since we know only that
J(g +f)=2J(g) n J(f) [see equation (5)], it is not immediately
clear that J(f 4+ g) n J(h) is not empty. These problems would not
arise if I were totally ordered.

To see that no trouble occurs, one needs the following auxil-
iary fact:

If p < r, g is such that

E,,H,=H;,H, N EH, &)
then
EIpHp = EIfo + EIQHQ (10)

The last equation means that the vector subspace E;;H; & H;
consists precisely of the vectors v € H; which can be written as a
sum v = v’ + ", where v € E;;H; and V' € E;;H;. This decom-
position is not unique, since the intersection E;;H; N E;;H; con-
tains non-zero vectors. We shall not prove here that (10) follows
from (9).

With the help of (10), it is easy to see that {f+ gl|h) is
defined. Let r € J(f) N J(h)and g € J(g) N J(h). Let p<Lr,q be
such that E;,H, = E;,H, N E;;H,. Then p € J(h). On the other
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hand, ¢ € J(g) and 7 € J(f). This means that g € E;;H;and f €
E;; H;. Consequently, f+ g € E,;;H;; + E;; H: = E;; H;, which
shows that p € J(f + g). This means that p € J(f+ g) N J(h) so
that the scalar product { f + g|k) is defined.

5. NESTED HILBERT SPACE ASSOCIATED TO AN
ORTHONORMAL BASIS

Let H, be a separable Hilbert space and {A{"} (k = 1,2,...) an
orthonormal basis of H,. Let I be the set of all sequences of strictly
positive numbers. Therefore, r € I is a sequence {r(k)} of numbers
r(k) > 0. Consider in I the natural partial order; r > g means
r(k) > q(k) for every k. Define in I an order-reversing involution
by #(k) = 1/r(k). It is easy to verify that this set I satisfies the
conditions (1,), (1), and (I;).

Let V be the vector space of all finite linear combinations of
the vectors A", Let f= %‘, c. b and g = Zk] d.h belong to V.

Given any r € I, consider the scalar product

(f’ g)r - ; Ck’.“r_g(k)dk

Denote by H, the completion of ¥ with respect to the norm defined
by this scalar product. It is a Hilbert space. We now have associ-
ated a Hilbert space H, to every r € I. If s > r (in I) denote by E,,
the natural embedding of H, into H,.

It can be verified that every such E;, satisfies the conditions
(Ns,), (Ns,), and (Nss) and that the family {E,,} satisfies the con-
ditions (Ind,) and (Ind,). Consider the algebraic inductive limit

H; = lim [Hr; E; 1]

It can be shown that H, is a nested Hilbert space, i.e., that the
conditions (NH,) and (NH,) are satisfied. The family u;, is defined
as follows:

Denote by A% (k = 1, 2,...) the vectors

K% = E; b (11)

in H,. It is easy to see that J(h'®) = I, i.e.,, that A® has a repre-
sentative A for every r € I. Consider in H, the vectors e** defined
by

erik) = r(k)h® (12)



