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ADVANCED TRANSPORT PHENOMENA

Advanced Transport Phenomena is ideal as a graduate textbook. It contains a
detailed discussion of modern analytic methods for the solution of fluid mechanics
and heat and mass transfer problems, focusing on approximations based on scaling
and asymptotic methods, beginning with the derivation of basic equations and
boundary conditions and concluding with linear stability theory. Also covered are
unidirectional flows, lubrication and thin-film theory, creeping flows, boundary-
layer theory, and convective heat and mass transport at high and low Reynolds
numbers. The emphasis is on basic physics, scaling and nondimensionalization,
and approximations that can be used to obtain solutions that are due either to
geometric simplifications, or large or small values of dimensionless parameters.
The author emphasizes setting up problems and extracting as much information as
possible short of obtaining detailed solutions of differential equations. The book
also focuses on the solutions of representative problems. This reflects the author’s
bias toward learning to think about the solution of transport problems.

L. Gary Leal is professor of chemical engineering at the University of California
in Santa Barbara. He also holds positions in the Materials Department and in
the Department of Mechanical Engineering. He has taught at UCSB since 1989.
Before that, from 1970 to 1989 he taught in the chemical engineering department at
Caltech. His current research interests are focused on fluid mechanics problems for
complex fluids, as well as the dynamics of bubbles and drops in flow, coalescence,
thin-film stability, and related problems in rheology. In 1987, he was elected to the
National Academy of Engineering. His research and teaching have been recognized
by a number of awards, including the Dreyfus Foundation Teacher-Scholar Award,
a Guggenheim Fellowship, the Allan Colburn and Warren Walker Awards of the
AIChE, the Bingham Medal of the Society of Rheology, and the Fluid Dynamics
Prize of the American Physical Society. Since 1995, Professor Leal has been one
of the two editors of the AIP journal Physics of Fluids and he has also served on
the editorial boards of numerous journals and the Cambridge Series in Chemical
Engineering.
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Preface

This book represents a major revision of my book Laminar Flow and Convective Transport
Processes that was published in 1992 by Butterworth-Heinemann. As was the case with
the previous book, it is about fluid mechanics and the convective transport of heat (or any
passive scalar quantity) for simple Newtonian, incompressible fluids, treated from the point
of view of classical continuum mechanics. It is intended for a graduate-level course that
introduces students to fundamental aspects of fluid mechanics and convective transport
processes (mainly heat transfer and some single solute mass transfer) in a context that is
relevant to applications that are likely to arise in research or industrial applications. In
view of the current emphasis on small-scale systems, biological problems, and materials,
rather than large-scale classical industrial problems, the book is focused more on viscous
phenomena, thin films, interfacial phenomena, and related topics than was true 14 years
ago, though there is still significant coverage of high-Reynolds-number and high-Peclet-
number boundary layers in the second half of the book. It also incorporates an entirely new
chapter on linear stability theory for many of the problems of greatest interest to chemical
engineers.

The material in this book is the basis of an introductory (two-term) graduate course on
transport phenomena. It starts with a derivation of all of the necessary governing equations
and boundary conditions in a context that is intended to focus on the underlying fundamen-
tal principles and the connections between this topic and other topics in continuum physics
and thermodynamics. Some emphasis is also given to the limitations of both equations
and boundary conditions (for example “non-Newtonian” behavior, the “no-slip” condition,
surfactant and thermocapillary effects at interfaces, etc.). It should be noted, however, that
though this course starts at the very beginning by deriving the basic equations from first
principles, and thus can be taken successfully even without an undergraduate transport back-
ground, there are important topics from the undergraduate curriculum that are not included,
especially macroscopic balances, friction factors, correlations for turbulent flow conditions,
etc. The remainder of the book is concerned with how to solve transport and fluids problems
analytically; but with a lot of emphasis on basic physics, scaling, nondimensionalization,
and approximations that can be used to obtain solutions that are due either to geometric
simplifications or large or small values of dimensionless parameters.

THE SCOPE OF THIS BOOK

No single book can encompass all topics, and the present book is no exception. We consider
only laminar flows and transport processes involving laminar flows, for incompressible,
Newtonian fluids. Specifically, we do not consider turbulent flows. We do not consider
compressibility effects, nor do we consider numerical methods, except by means of a brief
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introduction to boundary integral techniques for creeping flows. Further, we do not consider
non-Newtonian flows, except for a few limited homework examples, nor even the basic
constitutive equations for non-Newtonian fluids except briefly in the introductory chapter,
Chapter 2, primarily in the context of thinking about why fluids may exhibit non-Newtonian
behavior and hence what the limitations of the Newtonian fluid approximation may be.
We do consider both flow and convective transport processes, but with the latter generally
posed as a heat transfer problem. We shall see, however, that much of the same analysis
and principles apply to mass transfer when there is a single solute. Finally, multicomponent
mass transfer is not considered, and in the graduate transport sequence of classes would
often be taught as a separate class.

The goal of this book is to provide a fundamental understanding of the governing
principles for flow and convective transport processes in Newtonian fluids, and some of the
modern tools and methods for “analysis” of this class of problems. By “analysis,” I mean both
what one can achieve from a qualitative point of view without actually solving differential
equations and boundary conditions, as well as detailed analytic solutions obtained generally
from an asymptotic point of view. There is a strong emphasis on the derivation of basic
equations and boundary conditions, including those relevant to a fluid interface. I also
focus on complete descriptions of the solutions of representative problems rather than an
exhaustive summary of all possible problems. This is because of the importance that I place
on learning how to think about transport problems, and how to actually solve them, rather
than just being told that some problem exists with a certain solution, but without adequate
details to really understand how to achieve that solution or to generalize from the current
problem to a related but presently unanticipated extension.

An important tool that we develop in this book is the use of characteristic scales, nondi-
mensionalization, and asymptotic techniques, in the analysis and understanding of trans-
port processes. At the most straightforward level, asymptotic methods provide a systematic
framework to generate approximate solutions of the nonlinear differential equations of fluid
mechanics, as well as the corresponding thermal energy (or species transport) equations.
Perhaps more important than the detailed solutions enabled by these methods, however, is
that they demand an extremely close interplay between the mathematics and the physics,
and in this way contribute a very powerful understanding of the physical phenomena that
characterize a particular problem or process. The presence of large or small dimension-
less parameters in appropriately nondimensionalized equations or boundary conditions is
indicative of the relative magnitudes of the various physical mechanisms in each case, and
is thus a basis for approximation via retention of the dominant terms.

There is, in fact, an element of truth in the suggestion that asymptotic approximation
methods are nothing more than a sophisticated version of dimensional analysis. Certainly
it is true, as we shall see, that successful application of scaling/nondimensionalization can
provide much of the information and insight about the nature of a given fluid mechanics
or transport process without the need either to solve the governing differential equations
or even be concerned with a detailed geometric description of the problem. The latter
determines the magnitude of numerical coefficients in the correlations between dependent
and independent dimensionless groups, but usually does not determine the form of the
correlations. In this sense, asymptotic theory can reduce a whole class of problems, which
differ only in the geometry of the boundaries and in the nature of the undisturbed flow, to the
evaluation of a single coefficient. When the body or boundary geometry is simple, this can
be done by means of detailed solutions of the governing equations and boundary conditions.
Even when the geometry is too complex to obtain analytic solutions, however, the general
asymptotic framework is unchanged, and the correlation between dimensionless groups is
still reduced to determination of a single constant, which can now be done (in principle) by
means of a single experimental measurement.



Preface

It is important, however, not to overstate what can be accomplished by asymptotic (and
related analytic) techniques applied either to fluid mechanics or heat (and mass) transfer
processes. At most, these methods can treat limited regimes of the overall parameter domain
for any particular problem. Furthermore, the approximate solutions obtained can be no
more general than the framework allowed in the problem statement; that is, if we begin
by seeking a steady axisymmetric solution, an asymptotic analysis will produce only an
approximation for this class of solutions and, by itself, can guarantee neither that the solution
is unique within this class nor that the limitation to steady and axisymmetric solutions is
representative of the actual physical situation. For example, even if the geometry of the
problem is completely axisymmetric, there is no guarantee that an axisymmetric solution
exists for the velocity or temperature field, or if it does, that it corresponds to the motion
or temperature field that would be realized in the laboratory. The latter may be either time
dependent or fully three dimensional or both. In this case, the most that we may hope is that
these more complex motions may exist as a consequence of instabilities in the basic, steady,
axisymmetric solution, and thus that the conditions for departure from this basic state can
be predicted within the framework of classical stability theories. The important message is
that analytic techniques, including asymptotic methods, are not sufficient by themselves to
understand fluid mechanics or heat transfer processes. Such techniques would almost always
need to be supplemented by some combination of stability analysis or, more generally, by
experimental or computational studies of the full problem.

I want to thank my many colleagues and students who have contributed to this work for
many years. I would also like to thank the users of the first edition who made substantial
suggestions for improvement. I look forward to the reader’s reaction to this new version.

L. Gary Leal
Santa Barbara
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A Preview

A. A BRIEF HISTORICAL PERSPECTIVE OF TRANSPORT PHENOMENA
IN CHEMICAL ENGINEERING

“Transport phenomena” is the name used by chemical engineers to describe the subjects of
fluid mechanics and heat and mass transfer. The earliest step toward the inclusion of spe-
cialized courses in fluid mechanics and heat or mass transfer processes within the chemical
engineering curriculum probably occurred with the publication in 1923 of the pioneering
text Principles of Chemical Engineering by Walker, Lewis, and McAdams.! This was the
first major departure from curricula that regarded the techniques involved in the produc-
tion of specific products as largely unique, to a formal recognition of the fact that certain
physical or chemical processes, and corresponding fundamental principles, are common to
many widely differing industrial technologies.

A natural outgrowth of this radical new view was the gradual appearance of fluid
mechanics and transport in both teaching and research as the underlying basis for many
of the unit operations. Of course, many of the most important unit operations take place
in equipment of complicated geometry, with strongly coupled combinations of heat and
mass transfer, fluid mechanics, and chemical reaction, so that the exact equations could
not be solved in a context of any direct relevance to the process of interest. Hence, insofar
as the large-scale industrial processes of chemical technology were concerned, even at the
unit operations level, the impact of fundamental studies of fluid mechanics or transport
phenomena was certainly less important than a well-developed empirical approach (and
this remains true today in many cases). Indeed, the great advances and discoveries of fluid
mechanics during the first half of the twentieth century took place almost entirely without
the participation (or even knowledge) of chemical engineers.

Gradually, however, chemical engineers began to accept the premise that the generally
“blind” empiricism of the “lumped-parameter” approach to transport processes at the unit
operations scale should at least be supplemented by an attempt to understand the basic
physical principles. This finally led, in 1960, to the appearance of the landmark textbook
of Bird, Stewart, and Lightfoot,> which not only introduced the idea of detailed analysis of
transport processes at the continuum level, but also emphasized the mathematical similarity
of the governing field equations, along with the simplest constitutive approximations for
fluid mechanics and heat and mass transfer. The presentation of Bird et al. was primarily
focused on results and solutions rather than on the methods of solution or analysis. However,
the combination of the more fundamental approach that it pioneered within the chemical
engineering community and the appearance of chemical engineers with very strong mathe-
matics backgrounds produced the most recent transitions in our ways of thinking about and
understanding transport processes.



