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Introduction

Purpose. This book was conceived while I was revising my engineer-
ing mathematics textbook. I noticed that in many engineering and scientific
problems the nature of the boundary condition changes, say from a Dirichlet
to a Neumann condition, along a particular boundary. Although these mixed
boundary value problems appear in such diverse fields as elasticity and biome-
chanics, there are only two books (by Sneddon' and Fabrikant?) that address
this problem and they are restricted to the potential equation. The purpose
of this book is to give an updated treatment of this subject.

The solution of mixed boundary value problems requires considerable
mathematical skill. Although the analytic solution begins using a conven-
tional technique such as separation of variables or transform methods, the
mixed boundary condition eventually leads to a system of equations, involv-
ing series or integrals, that must be solved. The solution of these equations
often yields a Fredholm integral equation of the second kind. Because these
integral equations usually have no closed form solution, numerical methods
must be employed. Indeed, this book is just as much about solving integral
equations as it involves mixed boundary value problems.

Prerequisites. The book assumes that the reader is familiar with the
conventional methods of mathematical physics: generalized Fourier series,
transform methods, Green’s functions and conformal mapping.

1 Sneddon, I. N., 1966: Mized Boundary Value Problems in Potential Theory. North
Holland, 283 pp.

2 Fabrikant, V. I, 1991: Mized Boundary Value Problems of Potential Theory and
Their Applications in Engineering. Kluwer Academic, 451 pp.



Audience. This book may be used as either a textbook or a reference
book for anyone in the physical sciences, engineering, or applied mathematics.

Chapter Overview. The purpose of Chapter 1 is twofold. The first
section provides examples of what constitutes a mixed boundary value prob-
lem and how their solution differs from commonly encountered boundary value
problems. The second part provides the mathematical background on integral
equations and special functions that the reader might not know.

Chapter 2 presents mixed boundary value problems in their historical
context. Classic problems from mathematical physics are used to illustrate
how mixed boundary value problems arose and some of the mathematical
techniques that were developed to handle them.

Chapters 3 and 4 are the heart of the book. Most mixed boundary value
problems are solved using separation of variables if the domain is of limited
extent or transform methods if the domain is of infinite or semi-infinite extent.
For example, transform methods lead to the problem of solving dual or triple
Fourier or Bessel integral equations. We then have a separate section for each
of these integral equations.

Chapters 5 through 7 are devoted to additional techniques that are some-
times used to solve mixed boundary value problems. Here each technique is
presented according to the nature of the partial differential or the domain for
which it is most commonly employed or some other special technique.

Numerical methods play an important role in this book. Most integral
equations here require numerical solution. All of this is done using MATLAB
and the appropriate code is included. MATLAB is also used to illustrate the
solutions.

We have essentially ignored brute force numerical integration of mixed
boundary value problems. In most instances conventional numerical methods
are simply applied to these problems. Because the solution is usually dis-
continuous along the boundary that contains the mixed boundary condition,
analytic techniques are particularly attractive.

An important question in writing any book is what material to include
or exclude. This is especially true here because many examples become very
cumbersome because of the nature of governing equations. Consequently we
include only those problems that highlight the mathematical techniques in
a straightforward manner. The literature includes many more problems that
involve mixed boundary value problems but are too complicated to be included
here.

Features. Although this book should be viewed primarily as a source
book on solving mixed boundary value problems, I have included problems
for those who truly wish to master the material. As in my earlier books, I
have included intermediate results so that the reader has confidence that he
or she is on the right track.



List of Definitions

Function Definition
5(t — a) ={°5’ i;‘; / 5t —a)dt =1
I'(z) gamma function
1, t > a;
H(t - a) :{0, t<a.

Hankel functions of first and second kind and of order n
modified Bessel function of the first kind and order n
Bessel function of the first kind and order n
modified Bessel function of the second kind and order n
Legendre polynomial of order n
_ { -1, t <a,

1, t>a.

Bessel function of the second kind and order n
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Chapter 1

Overview

In the solution of differential equations, an important class of problems
involves satisfying boundary conditions either at end points or along a bound-
ary. As undergraduates, we learn that there are three types of boundary con-
ditions: 1) the solution has some particular value at the end point or along
a boundary (Dirichlet condition), 2) the derivative of the solution equals a
particular value at the end point or in the normal direction along a boundary
(Neumann condition), or 3) a linear combination of Dirichlet and Neumann
conditions, commonly called a “Robin condition.” In the case of partial dif-
ferential equations, the nature of the boundary condition can change along a
particular boundary, say from a Dirichlet condition to a Neumann condition.
The purpose of this book is to show how to solve these mized boundary value
problems.

1.1 EXAMPLES OF MIXED BOUNDARY VALUE PROBLEMS

Before we plunge into the details of how to solve a mixed boundary value
problem, let us examine the origins of these problems and the challenges to
their solution.



2 Mized Boundary Value Problems

e Example 1.1.1: Separation of variables

Mixed boundary value problems arise during the solution of Laplace’s
equation within a specified region. A simple example! is
0%u  O%u

WJra—y?:O’ O<z<m 0<y<oo, (1.1.1)

subject to the boundary conditions

uz(0,y) = u(m,y) =0, 0<y<oo, (1:1.2)
lim u(z,y) — 0, O<z<m, (1.1.3)
y—o00

and

= &
{ u(z,0) = 1, 0<z<e, (1.1.4)

uy(z,0) =0, &< E L,

The interesting aspect of this problem is the boundary condition given by
Equation 1.1.4. For x between 0 and c, it satisfies a Dirichlet condition which
becomes a Neumann condition as x runs between ¢ and 7.

The problem posed by Equation 1.1.1 to Equation 1.1.4 is very similar
to those solved in an elementary course on partial differential equations. For
that reason, let us try and apply the method of separation variables to solve
it. Assuming that u(z,y) = X(z)Y (y), we obtain

" "
XY = _YT = —k?, (1.1.5)

with
X'0)=X(m) =10, and lim Y(y) — 0. (1.1.6)
y—o0

Particular solutions that satisfy Equation 1.1.5 and Equation 1.1.6 are
up(x,y) = B, exp [— (n — %) y] cos[(n - %) x] ; (1.1.7)

withn =1,2,3,.... Because the most general solution to our problem consists
of a superposition of these particular solutions, we have that

u(z,y) = i ‘rexp[—(n—1) y] cos[(n — %) z]. (1.1.8)

(Sl

1 See, for example, Mill, P. L., S. S. Lai, and M. P. Dudukovié, 1985: Solution methods
for problems with discontinuous boundary conditions in heat conduction and diffusion with
reaction. Indust. Eng. Chem. Fund., 24, 64-77.



Overview 3

Substituting this general solution into the boundary condition given by Equa-
tion 1.1.4, we obtain

Z Anl cos[(n—3)z] =1, 0z < (1.1.9)
n=1 L 2
and
oo
ZA"COS[(’II—%) x] =10, e Sm. (1.1.10)
n=1

Both Equations 1.1.9 and 1.1.10 have the form of a Fourier series except that
there are two of them! Clearly the challenge raised by the boundary condition
along y = 0 is the solution of this dual Fourier cosine series given by Equation
1.1.9 and Equation 1.1.10. This solution of these dual Fourier series will be
addressed in Chapter 3.

e Example 1.1.2: Transform methods

In the previous problem, we saw that we could apply the classic method
of separation of variables to solve mixed boundary value problems where the
nature of the boundary condition changes along a boundary of finite length.
How do we solve problems when the boundary becomes infinite or semi-infinite
in length? The answer is transform methods.

Let us solve Laplace’s equation?

%u %
— 4+ =—=0 h 1.1.11
8x2+8y2 ; 0<zr<oo, 0<y<h, ( )

subject to the boundary conditions

ur(0,y) =0 and lim u(z,y) — 0, 0<y<h, (1.1.12)
uy(z,0) = 1/h, 0<z<1,
{ u(z,0) =0, 1<z <oo, {1115
and
u(z,h) =0, 0<z< oo (1.1.14)

The interesting aspect of this problem is the boundary condition given by
Equation 1.1.13. It changes from a Neumann condition to a Dirichlet condition
along the boundary z = 1.

To solve this boundary value problem, let us introduce the Fourier cosine
transform

u(z,y) = %/000 U(k,y) cos(kz) dk, (1.1.15)

2 See Chen, H., and J. C. M. Li, 2000: Anodic metal matrix removal rate in electrolytic
in-process dressing. [: Two-dimensional modeling. J. Appl. Phys., 87, 3151-3158.



