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Introduction

This book provides an introduction to the theories of fluids with micro-
structure. Flows of such fluids can exhibit many effects that are not possible
in classical nonpolar Stokesian fluids. This material attempts to present a
connected account of three different types of theories in a common nota-
tion. In keeping with the introductory nature of the presentation, only
Cartesian tensors have been used. The level of presentation only assumes
an exposure to fluid mechanics using Cartesian tensors. The notation is ex-
plained in the Appendix, where some of the results, which are required,
have also been summarized.

In addition to the usual concepts of nonpolar fluid mechanics, there are
two main physical concepts that go into building theories of fluids with mi-
crostructure: couple stresses and the concept of internal spin. Couple
stresses are a consequence of assuming that the mechanical action of one
part of a body on another, across a surface, is equivalent to a force and a
moment distribution. In classical nonpolar mechanics, moment distributions
are not considered, and the mechanical action is assumed to be equivalent to
a force distribution only. The laws of motion can then be used for defining
the stress tensor which, necessarily, turns out to be symmetric. Thus, in
nonpolar mechanics, the state of stress at a point is defined by a symmetric
second order tensor which is a point function that has six independent com-
ponents. However, in polar mechanics the mechanical action is assumed to
be equivalent to both a force and a moment distribution. The state of stress
is then measured by a stress tensor and a couple stress tensor. In general,
neither of these second order tensors is symmetric, so that the state of
stress at a point is measured by eighteen independent components. Thus,
the concept of couple stresses results from a study of the mechanical in-
teractions taking place across a surface and, conceptually, is not related to
the kinematics of motion.

On the other hand, the concept of microstructure is a kinematic one.
For classical fluids without microstructure, all the kinematic parameters are
assumed to be determined, once the velocity field is specified. Thus, if the
velocity field is identically zero, then there is no motion, and the linear and
angular momenta of all material elements must also be identically zero.
However, even when the velocity field is zero, the angular momentum may
be visualized as being nonzero by ‘‘magnifying’’ the continuum picture until
the identities of ‘‘individual’’ particles can be ‘‘seen.”” A particle may not
have any velocity of translation, so that its macroscopic velocity and thus its
linear momentum is zero, but the particle may be spinning about an axis.
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This spin would give rise to an angular momentum. If the same
phenomenon is assumed to hold true at the continuum level, then angular
momentum can exist even in the absence of linear momentum. This is not
true in the classical theories of fluid mechanics. At the kinematic level, a
specification of the velocity field is then not sufficient, and additional
kinematic measures, independent of the velocity field, must be introduced
to describe this internal spin. Such a fluid is said to have microstructure.

The concepts of couple stresses and microstructure are conceptually
different. The first concept has its origins in the way mechanical interac-
tions are modeled, while the second one is essentially a kinematic one, and
arises out of an attempt to describe point particles having ‘‘structure.”
Whereas in a general theory of fluids with microstructure, couple stresses
and internal spin may be present simultaneously, theories of fluids in which
couple stresses are present, but microstructure is absent, are also possible.
Similarly, microstructure may be considered in the absence of couple
stresses. In this way the main consequences of each of these concepts may
be studied before proceeding to the study of more general theories.

Several different approaches may be used for formulating such theories.
For example, a statistical mechanics model, which assumes noncentral
forces between particles, is known to give rise to couple stresses. Thus a
continuum theory for fluids with microstructure may be obtained from such
a model. The concept of couple stresses may also be introduced purely on
the basis of a continuum argument. Microstructure can be introduced heu-
ristically. Such theories may also be formulated by an averaging procedure
in which the macroscopic variables are obtained by taking suitable averages
over continuum domains. In this book an attempt has been made at unify-
ing three different ways of developing such theories.

The simplest theory of couple stresses in fluids, in the absence of micro-
structure, is given in Chapter 3. The most important effect of couple
stresses is to introduce a size-dependent effect that is not predicted by the
classical nonpolar theories. For example, in pipe Poiseuille flow, even after
all the variables have been nondimensionalized in the usual way, the veloci-
ty profile is a function of the pipe radius.

Chapter 4 describes a simple theory of fluids with microstructure in
which couple stresses are absent. The inclusion of microstructure predicts
phenomena such as stress relaxation and Bingham-plastic-like flow.

Finally, more general theories, in which both couple stresses and micro-
structure are accounted for in a systematic manner, are discussed in
Chapters 5 and 6.

Several available approaches to formulating theories of fluids with micro-
structure have not been discussed. Neither has an attempt been made to
compare all the theories that are now available. References to several excel-
lent review articles, which compare different theories, are given below. In
particular, the article by S. C. Cowin provides a detailed self-contained pre-
sentation of his theory of Polar fluids. The last two references give a fairly
complete account of the polar fluid theories proposed by A. C. Eringen.
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Pertinent references have been listed at the end of each chapter. Finally,
a comprehensive bibliography, in chronological order, is given at the end of
the book.

References

1. Ericksen, J. L. (1967). Continuum Theory of Liquid Crystals, Appl.
Mech. Rev. 20, 1029-1032.

2. Ariman, T., Turk, M. A., and Sylvester, N. D. (1973). Microcontinuum
Fluid Mechanics — A Review, Int. J. of Eng. Sci. 11, 905-930.

3. Ariman, T., Turk, M. A., and Sylvester, N. D. (1974). Review Article:
Applications of Microcontinuum Fluid Mechanics, Int. J. Eng. Sci. 12,
273-293.

4. Cowin, S. C. (1974). The Theory of Polar Fluids, ‘‘Advances in Ap-
plied Mechanics”’ (Chia-Shun Yih, Ed.), Vol. 14, Academic Press, New
York, 279-347.

5. Eringen, A. C. (Editor), (1976). ‘“‘Continuum Physics, Vol. IV: Polar
and Non-Local Field Theories,”” Academic Press, New York.

6. Eringen, A. C. (1980). Theory of Anisotropic Micropolar Fluids, Int. J.
Eng. Sci. 18, 5-17.



CHAPTER 1

Kinematics of Flow

1.1 Introduction

This chapter examines some aspects of kinematic measures of motion.
The discussion is limited to the classical model, in which microstructure is
not considered, and where the motion is specified by the history of the par-
ticle velocity, so that there is no motion if the velocity field is identically
zero. Theories in which there is motion even in the absence of a velocity
distribution are considered in later chapters.

In the usual discussion on the kinematics of flow, an emphasis is placed
on the rates of strain of material line elements and on the rates of shear
strain between two orthogonal material line elements. The rates of rotation
of line elements are also considered. However, the study of kinematics does
not usually go beyond a consideration of the rate of deformation tensor,
which determines the normal and shear strain rates, but does not measure
all aspects of motion. Some higher order kinematic measures are introduced
in this chapter.

Cartesian tensors have been used for developing the theory. In some in-
stances a matrix representation for tensors has been used for convenience.
A summary of the main results concerning Cartesian tensors, as well as a
description of the notation, is given in the Appendix.

1.2 Velocity Gradient Tensor

The state of motion of a continuous body is assumed to be completely
specified when the velocity distribution is known. Once the velocity v(x,¢)
of the particle at x is known at time ¢, a study of the deformations of line
elements may be attempted. Since deformations of material elements can
be very large over finite time intervals, a study of deformations over
infinitesimal time intervals is appropriate. This leads naturally to a study of
the rates of deformation rather than deformations.

Consider a mass of fluid that has the configuration B at time ¢ and B’ at
time ¢+ + Ar. Let P@ = dx = dén be a material line element in B which, at
time ¢, is at the point x, where n is a unit vector along PQ, as shown in
Fig. 1.2.1. After time A¢, the same material line element, which will now
be in configuration B’, will move to P'Q’' = dX = dEN, where the point P’
has the position vector X, and N is a unit vector along P'Q’. The general
problem of kinematics is then to relate the line element ¢X, at time ¢ + At,
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to its original state dx, at time ¢t. Thus, the problem of studying short time
deformations is to develop a relation of the form dX = f(dx,At). Let v and
v + dv be the velocities of the points P and Q, respectively, so that
PP'= v At and Q@'= (v + dv)At. Then, from the geometry shcwn in
Fig. 1.2.1

dX = dx + dv At (1.2.1)

dx=d¢n
x| A2 dX=dEN

Fig. 1.2.1 Configurations of a body at two times.

Now dv = (dv,) is the velocity difference vp — v of the points P and Q at
the same time ¢. Therefore, since at time ¢ the velocity of the different
fluid particles is a function of the coordinates x; of x,

av;
dv;, = a7 dx, = v, ,dx,
Thus
dv; = gidx, or dv=GTdx (1.2.2)

where G = (g;) = (v, ;) is called the velocity gradient tensor.
Using this result, Eq. (1.2.1) gives

dX;= (6, + At g)dx, or dX= I+ ArGT)dx (1.2.3)
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which shows that, for short intervals of time, the configurations of a materi-
al line element can be determined once the velocity gradient tensor g; = v, ;
is known.

The next step is to develop expressions for rates of change of lengths
and angles between line elements and the rates of rotation of line elements.
Other aspects of deformation, such as the rate of twisting and the rate at
which curvature is induced in line elements, will also be considered.

Important roles are played by the symmetric and skew-symmetric parts
of G. The symmetric part D, with components d; = 1(g;+ g;) =
(v + v ), is called the rate of deformation tensor and the skew-
symmetric part W, with components w; = 1(g; — g) = (v, — v ), is
called the spin tensor.

1.3 Rate of Deformation Tensor

At time ¢, let d¢ be the length of a material line element dx at the
point x, in the direct n, so that dx = dén. After time At the material line
element becomes dX, having a length d= in the direction N which, in gen-
eral, is different from n, so that dX = dEN. Physically, the time rate of
change of length of a material line element, per unit length, is of interest
since it indicates the rate at which the line element is being stretched. More
formally, the rate of normal strain, € (x,#;n), at the point x at time ¢ in the
direction n, is defined to be the time rate of change of the length of a ma-
terial line element, per unit length, which is originally along the direction n.
Thus, for a material line element dx = dfén at time ¢, which goes into
dX = dEN at time r + A,

_1 D 1 _—dé
e(x,7;m) d.f Dt(a’é) Alruﬁ,{) d§ ’ (1.3.1)

where D/ Dt denotes the material time derivative.
Now dX;,= (8, + At g;)dx, = d¢(5,, + At g,)n, implies that d=2=
dX;dX, = d£*(8,; + At g,) (8, + At gg)n,n,, which can be written as
E = d§[1 + A’(grs + gsr) n, g + (At) gngsrnrns] b

or, since At is small,
— At 2
dg = d§[1 + T(grs iy gsr)nrns 3 O(At )]

Use of the definition of € given in Eq. (1.3.1) then results in

e(x,;n) = dyn,n, = n”Dn (1.3.2)
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which shows that normal strain rates are determined by the rate of deforma-
tion tensor.

Let n;= (/) and my,= (m;) be two mutually orthogonal directions.
Then, the rate of shear strain, y (x,#;n;,n,), between these two directions, is
defined as the time rate of the decrease of the angle between two material
line elements which are originally along n; and n,, respectively. In order to
obtain an expression for the shear strain rate, consider two material line ele-
ments which, at time ¢, are given by dx = d&n,, that is by dx;, = dé,/;, and
dy = dém, or dy; = dé,m;. After time Ar they will become, respectively,
dX; = d¢, (8, + At g;) I and dY;, = d&,(8, + At g;) m,. By definition the
angle between dX and dY is (w/2— yAt), so that dX,dY,=
dE1dZ,cos(m/2 — yAt) = d=,dE,sin(yAt), where d=, and d=, are,
respectively, the lengths of dX and dY. Thus

dE]dEzSin('y A[) = d§|d§2(8,,- + A[ gri)(as,' + At gsi)l,-ms
= dfld§2[(A[) (grs t gsr) lrms ¥ (AI)Z grigsilr"‘s]

as l,m, = 0. Since At is small, sin(yA¢) = yA¢, so that

y = limit ———— a¢, dé [2d,s L, mi+ (At g, g; | m]

AL—0 d:, d=

Now dE| = d¢& (1 + At d,l 1), so that d&,/d=5, = [1 + At d/[,]~", which,
in the limit, gives d¢,/d=, = 1. Finally

y(x,t;my,ny) = 2d,,[.m; = 2n Dn, (1.3.3)

Thus, the rate of deformation tensor gives all the information concerning
normal and shear strain rates. By choosing the directions, along which these
rates are being determined, along the coordinate axes, the following in-
terpretation for D can be shown to be true: the diagonal components of D
give the normal strain rate along the corresponding axis. For example, dj;
is the rate of normal strain along the x; axis, and so on. On the other hand,
the off-diagonal components give half the shear strain rate along the
corresponding axes. For example, d), is half the shear rate between the X1
and x; axes, that is d\; = 1y (x,ti},i)). Thus, the rate of deformation ten-

sor is determined once the normal strain rates and shear strain rates are
known, respectively, along and between any triple of mutually orthogonal
directions.

1.4 Analysis of Strain Rates

The analysis of strain rates is concerned with the following three ques-
tions:
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(a) At each point in a fluid, are there three mutually orthogonal direc-
tions such that the rates of shear strain between each pair are
zero? Such a triple of mutually orthogonal directions, if they ex-
ist, are called the principal directions of strain rate.

(b) Along which directions does the rate of normal strain have ex-
treme values? And

(c) Between which pair of orthogonal directions is the rate of shear
sirain a maximum?

Since D is a symmetric tensor, all its proper values are real and at least
one set of three mutually orthogonal proper vectors exists. When the three
proper values are distinct, there is only one such set of proper vectors.
When two of the proper values are equal, there is one proper vector
corresponding to the distinct proper value and every vector normal to it is a
proper vector corresponding to the equal proper values. Finally, when the
three proper values are equal, every direction is a proper vector of D. Every
set of three mutually orthogonal proper vectors of D constitutes a set of
principal axes of strain, for, if n;, n, and n; are a set of mutually orthogonal
proper vectors, then, 7y (m;,ny) = 2n/Dn, = 2y,n'n, = 0, since Dn, =
vomy, and so on. Thus, at least one set of principal directions of strain rate
always exists at each point.

The normal strain rate along the direction n is given by e€(n) = n” Dn.
Extreme values of e(n) are to be found subject to the constraint n” n = 1.
These values are determined by Dn = An, so that the extreme values of the
normal strain rate occur along the principal directions of strain rate.

The extreme values of the shear strain rate may be shown to occur be-
tween pairs of directions that bisect the principal axes of strain rate. The
corresponding local extreme is given by the difference of the corresponding
principal strain rates.

If the coordinate axes are chosen to be parallel to the principal axes of
strain rate, the resulting coordinate system is called a principal coordinate
system. In a principal coordinate system D has a diagonal representation,
the off-diagonal elements being zero.

1.5 Spin Tensor

The spin tensor w; = %(g,.j — g;), which is the skew-symmetric part of
the velocity gradient tensor, will now be shown to measure the rates of rota-
tion of line elements in a certain average sense. With the skew-symmetric
tensor w; can be associated the pseudovector w; = %e,jk wjx, Which gives the
dual relation w; = e wi,. A use of wy;=2(v,;— ;) results in
®; = Te; V. ; Or @ = 1V xv. The pseudovector w is called the vorticity.
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Let n; = (/), m; = (m;) and n; = (n;) be a set of right-handed orthonor-
mal vectors. Consider a line element dx = d¢,n;, along n;, which is
represented by OA in Fig. 1.5.1. After time A¢, the element
OA = dx = d¢ny will deform into OB= dX= (I+ArG7)dx=
dé (I + At GT)ny, so that the vector AB = At d¢,G" n,. If a perpendicu-

Fig. 1.5.1 Rotation of line elements about the n axis.

lar is dropped from B onto a line through A which is parallel to n,, meeting
it at B', then AB'= (4B)"ny = At dé;n/Gn,. The rotation of O4 about
n; is given by Af; = AB/OA = At n{ Gn,. Similarly, the rotation A6, of
an element dy = dén,, along n,, about m3, is A8, = At n/G(—n)) =
—At n/ G n,. Therefore, the average rotation of dx and dy about n; is
(A6, + A46,)/2 = Ar 0/ [1(G — GT)In, = At n/Wn,. Thus, the average
rotation rate of two line elements along n; and n,, about n3, is given by
n/Wn, = w, . m,. This average rate would seem to depend on the choice of
the elements being along n; and n,. However, a use of w,, = ¢, w,, results
in wyhmg= eylmw, = nw, since eyl m is the cross product n; = (n,) of
n; and n,. The expression n,w, = ny @ shows that this average rate of rota-
tion is the same for every pair of orthogonal line elements in the plane of n,
and n,. Now, if O (n) is defined to be the average rate of counterclockwise
rotation about n, of any two perpendicular material line elements which lie
in the plane normal to n, then

Q) =ne,=n"e (1.5.1)

Thus @, and therefore W, measures the average rate of rotation of line ele-
ments.

Given w, or W, the maximum rate of rotation is Q (n) = le! and occurs
for orthogonal line elements which lie in the plane perpendicular to @. On
the other hand Q (n) = 0 for any n which is orthogonal to .



