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Preface

This book is intended to cover the requirements of students
reading Applied Mechanics in the Technician Education
Council (TEC) courses in Mechanical and Production Engi-
neering, Ordinary National Certificate or Diploma courses
in Engineering or Technology, or in the first year of the Higher
National Diploma or Degree courses in Engineering.

To present the basic principles of applied mechanics in a
manner acceptable to the student; to furnish the student with
a liberal quantity of worked examples, including graphical
solutions; to supply the student with a number of exercises for
his own practice—these are the aims which the author has had
predominantly in mind during the preparation of this work.

The introduction of SI units has helped to resolve many of
the difficulties which arose from the different systems of units
previously in use, particularly in the dynamics section of the
subject. Perhaps there is a tinge of regret in realising that the
controversies surrounding slugs and poundals will now be-
come a thing of the past. Undoubtedly the student will benefit
by the rational system now being accepted, and particularly by
the fact that it will become standard practice.

Presumably all students taking a course of this type will
have made a reasonable study of mathematics along lines
suited to the requirements of this book. It would seem
purposeless to claim that this presentation of applied mecha-
nics has been made without recourse to mathematics. Any
student who is not sufficiently at home with mathematics to be
able to appreciate the development of formulae, and the
solution of examples herein set down cannot claim to have
reached the standard demanded by National Certificate
requirements. Mathematics is one of the tools of the engineer:
he is encouraged to use it in these pages.

It is likely that some students will come to a study of
applied mechanics without being previously in a Mechanical
Engineering Science class. For these students, matter is
presented in this volume which has appeared previously in the
author’s book Certificate Mechanical Engineering Science.
Topics such as vectors, relative velocity, force, and mass are
among the examples of the need for this repetition. In other
cases, a summary is provided of work with which the student
should be familiar before proceeding with the more advanced
work about to be presented.

Typical questions have been taken from examination papers
set by the following organisations: the Union of Lancashire

and Cheshire Institutes, the East Midlands Educational Insti-
tution, the Union of Educational Institutions, the Northern
Counties Technical Examinations Council, the Yorkshire
Council for Further Education, the Welsh Joint Education
Committee, and the Institution of Mechanical Engineers.
These have been acknowledged in the text and the author
expresses his appreciation for the cooperation of these
examining Boards.

The author would like to place on record his grateful
acknowledgement of the valuable help given by the publishers
and the general editor, and his indebtedness to many of his
colleagues, particularly Mr A. R. Field for the considerable
help with the revision, and to his wife for her patience and
encouragement during a preparation period which only the
wife of an author can appreciate.

- J. D. WALKER
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Units

The Systéme International d’Unités, abbreviated to SI, has
been accepted by the International Organisation for Standard-
isation as the most rational system of measurement. It is being
introduced all over the world and will ultimately be the only
system of units in use not only in technical and business areas
of work, but also in everyday life.

The system is based on six units, which are arbitrarily
defined.

Quantity Unit Symbol
length metre m

mass kilogram kg

time second S
electric current ampere A
temperature kelvin K
luminous intensity candela cd

Other units and combinations of units are, with limited
exceptions, made up from the above.

Multiples of these units are expressed, again with limited
exceptions, in powers of 1000, i.e. 10* 10° 10~ 10~¢, and are
given characteristic prefixes, of which the following are the
more usual.

Prefix Symbol Multiply by

mega M 1000000 = 10°
kilo k 1000 =103
milli m 0-001 =103
micro w 0-000001 = 10-°¢

The following units are used in this book.

Length m
km
mm
cm

Area m?

mm?

Volume m3
1

Mass kg
g
t
Density kg/m?
Time s
min
h

Velocity km/h
m/s

Acceleration m/s?

Temperature K
°C

Force N
kN

Torque and moment Nm
kNm

Work and energy J
kJ

Power W
kW

Stress N/m?
N/mm?

Pressure N/m?

Frequency Hz

metre
kilometre
millimetre
centimetre

square metre
square millimetre

cubic metre
litre (1000cm?)

kilogram

gram

tonne (1000kg)

kilogram per cubic metre
second

minute

hour

kilometres per hour
metres per second

metres per second per second

kelvin
degree Celsius

newton
kilonewton

newton metre
kilonewton metre

joule
kilojoule

watt
kilowatt

newton per square metre
newton per square millimetre

newton per square metre
bar (10°N/m?)

hertz
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Chapter 1

Velocity and Acceleration

It is usual to start a study of applied mechanics with the section
dealing with motion, which is often called dynamics. Alter-
natively, a start could be made with the other main division
of the subject, relating to stresses and strains, and forces and
frameworks, generally referred to as statics, although the more
specialised title ‘strength of materials’ is sometimes used to
describe this section.

Whichever section is chosen as the starting-point, a know-
ledge of vectors is essential, since both velocities and forces are
vector quantities. In general, there are two types of quantities:
scalar and vecror. A scalar quantity is one which can be
defined purely by a number. For example, the number of nuts
and bolts in a tray is a scalar quantity, since a number such as
50 would describe the quantity. Similarly, the length and
diameter of the bolts are also scalar quantities, since again
numbers such as 7Smm and 10mm are sufficient to describe
the length and the diameter. A vector quantity is one which is
completely defined only when a direction is added to the
number. The value of a force is completely given only when
the direction ‘downwards’ is added to the magnitude ‘10 N’.
The value of a velocity is completely given only when the
direction, ‘north-east’, is added to the magnitude, ‘50 kilo-
metres per hour’. Hence both forces and velocities are vector
quantities.

A vector quantity can be represented by a line drawn to
scale and in the stated direction, with an arrow indicating the
sense of the line. This line is usually called a vector.

Addition and Subtraction of Vectors

Scalar quantities can be added together by the normal arith-
metical rules of addition, and similarly one can be subtracted
from another in the normal arithmetical manner. Addition
and subtraction of vector quantities must, of course, take into
account the direction of the vectors concerned. In fig.1.1(i),
lines A and B represent two vector quantities, such as two
forces. We require to know their sum and their difference.

/ ..
} (i)

Fig.1.1 Sum of vector quantities

Sum of Two Vectors

1 Draw ox to represent in magnitude and direction the
quantity 4. Note that the bold italic type for the letters ox
indicates that a vector is being represented, and therefore
direction and sense from o to x is being taken into account.

2 From the point x at the end of ox, draw the line xy to
represent in magnitude and direction the quantity B.

3 Join oy. Then oy represents in magnitude and direction the
sum of the vectors 4 and B.

Important. Note that the direction of the final vector is
always from the start, o, to the finish, y.

Example 1.1 Find the sum of the two vector quantities (i) 30
units due east, (ii) 4 units due north (fig.1.2).

oa represents the 30 units due east quantity. From a we
draw ab to represent 40 units due north. The vector ob (from
start to finish) is the sum of the other two vectors, and by
measurement is 50 units in the direction 53°8” north of east.

Had there been more than two vector quantities to add
together, the extra ones would have been added on, in turn, to
the end of the previous vector.

N
b
40 50 40
i —— a
30 = 30
Fig.1.2

Subtraction of Two Vectors

The difference of two quantities (scalar or vector) can be
written in the form of the addition of one of the quantities to
the negative of the other.

Hence A—B=A+ (—B)

Now if the line oa in fig.1.3 (i) represents a vector quantity A,
then the line ao in fig.1.3(ii) represents the vector (—A).
Making use of this fact, let us determine the difference of the
two vector quantities represented by 4 and B in fig.1.1(i),
reproduced again in fig.1.4(i).

A -A
—_——
o a o a

(i) (i)

Fig.1.3 Representation of negative vector
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=B

(i) (i)
Fig.1.4 Subtraction of vector quantities

1 Draw ox to represent in magnitude and direction the
quantity A.

2 From the point x at the end of ox, draw the line xy to
represent in magnitude and direction the quantity — B.
This will mean that the direction of xy will be opposite to
that of the given quantity B, but the magnitude represented
by xy will be equal to that of B.

3 Join oy. Then oy represents in magnitude and direction
the sum of 4 and (— B); that is, oy represents the difference
of the two vectors.

N
30
o a
58°8'
440
e ‘} 40
S —

30

Fig.1.5 b

Example 1.2 Find the difference of the two vector quantities (i)
30 units due east, (ii) 40 units due north.

oa represents the 30 units due east quantity (fig.1.5). From
a we draw ab in the southerly direction, opposite to the direc-
tion stated for the second vector. The length of ab represents
the magnitude of 40 units. The vector ob (still from start to
finish) is the difference of the other two vectors, and, by
measurement, is 50 units in the direction 53°8” south of east.

Hence (30 units east) — (40 units north) = 50 units 53° 8’
south of east.

Vector Notation

As an alternative to defining a vector quantity by means of
‘compass points’, such as north and north-east, it is quite usual
to indicate the quantity in the following manner:

10900

This means that the magnitude of the vector is 10 units, and
that its direction is 90° to the horizontal, measured in an anti-
clockwise direction.

2

Thus 10900 and 10 units due north are the same,
500 and 5 units due east are the same,

62000 and 6 units 20° south of west are the same.

Displacement

If a point moves from one position to another position, we say
that it has been displaced. To indicate the amount of the dis-
placement, we must state both the magnitude, sometimes called
the distance, and the direction of the displacement. Thus
displacement is a vector quantity. If the quantities mentioned
in example 1.1 were displacements, suggesting that a point
was displaced 30 m due east and then 40 m due north, its final
displacement, being the sum of these two, would be 50m 53°8’
north of east. This would indicate the resultant displacement
of the point relative to the starting position. You will notice
that the distance moved by the point is 30 + 40 = 70 m. This
is another illustration of the difference between a scalar
quantity, such as distance, and a vector quantity, such as dis-
placement.

The unit of displacement is the metre.

Velocity

The velocity of a point is the rate of change of its displacement.
If the velocity is uniform, that is if the point has equal displace-
ments during equal intervals of time, then we can say that its
velocity is equal to the displacement in unit time, or the dis-
placement per second, since the second is the normal unit of
time. Having uniform velocity, we should expect the point to
have the same displacement in successive intervals of time.

If the velocity is varying, we can state its value at a given
instant. We can say, for example, that the magnitude of the
velocity of a point at a particular instant is 10 m/s, by which
we mean that, if it maintained that velocity without change,
then the point would move 10m in the next second. In fact,
the point may move 100m or 2m in the next second, if its
varying velocity is increasing or decreasing.

Now velocity involves both magnitude and direction. The
generally accepted concept of speed is, in fact, the magnitude
portion of velocity. We say that the speed of a car is 60 km/h,
but we say that the velocity of the car is 60 km/h due north.

Speed Velocity

Fig.1.6 Speed and velocity. Speed deals with the magnitude or
number part. Velocity has to do with both the magnitude
and the direction of the motion.



Velocities are vector quantities, and their addition and sub-
traction, which play an important part in applied mechanics,
are carried out as previously indicated.

Acceleration

Any change in the velocity of a moving point involves an
acceleration (or a retardation, which is simply a negative
acceleration).

Acceleration is the rate of change of velocity. If the velocity
of a point is 10 m/s at one instant, and this velocity is increas-
ing at the rate of 2 m/s each secon, then at the end of 1
second the velocity will be 12 m/s, and at the end of the next
second it will be 14 m/s. The rate of increase of 2 m/s each
second (written 2 m/s?) is the acceleration of the point. If the
velocity were decreasing by 2 m/s each second, then we should
refer to a retardation of 2 m/s2.

In practice, accelerations change as much as velocities, but
for the purpose of our work in applied mechanics we shall be
concerned only with uniform acceleration, and with a rather
special type of motion in which the varying acceleration
follows a clearly defined mathematical pattern.

Accelerations, since they involve velocities, are also vector
quantities.

Now because a change in velocity is produced if either the
magnitude or the direction of the velocity is changed, it
follows that two types of accelerations are involved in these
changes. Figure 1.7 indicates the magnitude of the velocity of
a car moving along a straight road; thus the direction of the
velocity remains constant. The magnitude is increasing and
the car is accelerating. The acceleration is in the direction of
the velocity of the car, and is known as linear tangential accele-
ration, although at this stage it may not be very apparent as to
why this name ‘tangential’ is used.

50 km/h 75km/h 100 km/h

O ©) ©)

e p—b> >

Fig.1.7 Acceleration due to change of magnitude of velocity. The
direction of this car is constant. The magnitude of its
velocity is changing from 50 to 100km/h. Hence the car
is accelerating.

Figure 1.8 indicates a car moving in a circular path whilst
the speedometer remains constant, i.e. the speed of the car is
constant. The direction of the velocity is constantly changing.
It is always taken as tangential to the path of motion. The
arrows are therefore vectors, indicating the velocity of the car
at successive intervals. These velocities are 45 km/h NE, 45
km/h E, and 45 km/h SE. The velocities are changing, and
hence acceleration is involved. This acceleration is known as
centripetal or radial acceleration, and is perpendicular to the
direction of motion, although we must wait until we come to
study motion in a circular path before we fully appreciate this.

Velocity and Acceleration

Fig.1.8 Acceleration due to change of direction of velocity. The
magnitude of this car’s velocity is constant at 45 km/h, its
direction is, however, changing, as it moves in a curved
path. There is, therefore, a change in the velocity of the
car. Inother words, the car is accelerating.

Relationship between Displacement, Velocity,
Acceleration, and Time

Now let us establish some expressions which connect these
four important quantities. The following symbols are usually
adopted:
= distance travelled in m
= time in seconds
= initial velocity in m
= final velocity in m/s after ¢ seconds
= acceleration in m/s?

QA = & ™

Whilst the velocity increases uniformly from « m/s to v m/s,
u-+v

in time 7 seconds, the average velocity will be )

m/s.
Distance travelled = average velocity x time

:Q‘;—V)’......(l)

ie. s

The initial velocity, «, will be changed to

u + aattheend of 1 second

u -+ 2a at the end of 2 seconds
u + 3a at the end of 3 seconds
u + at at the end of # seconds

Representing this by v, the final velocity, we have

v=u-+at. . . . . . . (2
Taking u across to the other side, we have

v—u=a. . . . . . . Q)
Now we have seen that

Sz(u—*z—v)t

which can easily be converted into
2s
u-+v= T

or v—|—u=2—ts i 5 5 i . s 4
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Multiplying equations (3) and (4) together,
(v—u)(v+u)=27s><at

The left-hand side is the difference of two squares, and on the
right-hand side we can cancel out the #’s. Hence we get

v i—uw=2as . . . . . . (5

Again, substitute the value of v as given in equation (2) into
equation (1):
_ (w4 (u+ an]t
A

~ Qu + at)t
a 2

s=ut+%a* . . . . . . . (6)

These formula are extremely important. For convenience they
are collected together here.

Uniform velocity (@ = o)
s = vt
Uniform acceleration v = u + at

 (u A )t
2

= 2as
s = ut + at*

If the body is accelerating, a is positive.
If the body is retarding, a is negative.

Example 1.3 A car passes a certain point with a velocity of
10 m/s, and a point 1 km away with a velocity of 30 m/s, the
acceleration being uniform. What is the average velocity of
the car? How long did it take the car to travel the distance
between the two points ? What was the acceleration of the car?

Average velocity (since acceleration is uniform)

u-+v
T2
_ 10 + 30 s
2
= 20 m/s
Time taken = Clsmna (m)
average velocity (m/s)

1000
~ 20 °
=50's

Increase in velocity = (30 — 10) m/s
= 20 m/s

This occurs uniformly in 50 seconds

4

change in velocity

.. Acceleration = -
time

= 04 m/s?

i.e. Average velocity is 20 m/s, the car takes 50 seconds to travel
between the two points with an acceleration of 04 m/s*.

Example 1.4 With what initial velocity must a body be travel-
ling in order to come to rest in 100m as a result of a uniform
retardation of 8 m/s??

Acceleration a = —8m/s?
Distance travelled s = 100m
Final velocity v =0m/s

Initial velocity w= 7

Now v — u? = 2as
0> — =12 x (—8) x 100
u* = 1600

i.e. Initial velocity, u, is 40 m/s.

Example 1.5 Two signals are 1km apart. A train passes the
first with a speed of 108 km/h and passes the second signal 40
seconds later. During this period, the brakes are applied to
give a uniform retardation. Determine the velocity of the
train passing the second signal, and also the magnitude of the
retardation.

108 < 1000

Initial velocity u = 60 % 60

= 30 m/s
Distance travelled s = 1000 m

Time taken ¢t = 40 seconds
Final velocity v = ?

- (u+v)t
T 2

1000:(30+v)40

2
v = 20 m/s

Retardation s = ut + %at?
1000 = 30 x 40 + % x 40%
a= —025m/s?

i.e. Retardation of train is 0-25m|s?, and the train passes the
second signal at 20m|s.

Velocity-time Diagrams

The velocity-time diagram is a graph in which the velocity of a
point is plotted against a time base. Figure 1.9 illustrates three
such diagrams. On the left-hand side is a velocity-time dia-
gram for a point moving with uniform velocity; in the centre
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Fig.1.9 Velocity-time graph. The area under such a graph repre-
sents the distance travelled.

we have a diagram for a point moving with uniformly in-
creasing velocity, i.e. with uniform acceleration; whilst the
diagram on the right is for a point whose velocity is varying in
an irregular manner.

In each case, the distance travelled by the point is numeric-
ally equal to the area under the corresponding portion of the
graph. This important relationship applies to all forms of
motion, however complicated they may be. Many problems
dealing with varying velocities can be solved very neatly by
using the velocity-time diagram. In the case of irregular
variation of velocity, the area under the diagram can be found
by one of the methods indicated in Appendix 2.

Example 1.6 A train travelling between two stations 3km apart
completes the journey in 5 minutes. During the first 30 seconds
the train is moving with a constant acceleration; whilst a uni-
form retardation brings the train to rest in the last 20 seconds.
For the remaining portion of the journey the train is moving
with uniform speed. Calculate the value of (a) the uniform
speed, (b) the acceleration, and (c) the retardation, both in
units of m/s2.

Illustrate your answer with a speed-time graph, and use this
graph to obtain the distance travelled in the first and last

minutes of the train’s motion. NCTEC
Let a = acceleration, m/s?
f = retardation, m/s?
v = uniform velocity, m/s
then during first 30 seconds v = at (since u = 0)
V=300 « « = w =+ w 1)
During last 20 seconds u = v — ft
0=v—20f
V=20f = ¢ & 2 & » « 2
Equating (1) and (2), 30a = 20f
3
...f = ia . . . . . . . (3)

Distance travelled whilst accelerating
s = ut + lat?
=0 + 4a x 30?
s = 450a m
= 15y m from (1)

Velocity and Acceleration

Distance travelled at uniform speed

s = vt
[(5 x 60) — (30 + 20)]v
= 250y m

I

Distance travelled during retardation

s = vt — % ft* (negative due to retardation)

= 20v — 1f x 20?

= 20v — 2001

= 20v — 10v from (2)
= 10v m

Total distance travelled = 15v + 250v -+ 10v
= 275v
= 3000 m

3000
275
= 109 m/s

a) Uniform velocity = 10-9m/s

b) Acceleration a == 3% from (1)

_ 109
T30

= 0-363m/s?
v
20 from (2)

_ 109

20

= 0-545m/s%. (Check with equation (3).)

¢) Retardation f =

Figure 1.10 shows the velocity-time diagram with the shaded
portions representing distances travelled during the first and
last minutes.

b ¢ f g

Velocity

1
O 30 60 120 180 240 280 300
Seconds

Fig.1.10

Distance travelled during the first minute
= area of trapezium abcd
= ¥(bc + ad) X cd
= 3(30 + 60) x 10-9
= 490m
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Distance travelled during last minute
= area of trapezium efgh
= Y(fg + eh) X fe
= 1(40 + 60) x 109
= 545m

i.e. The uniform velocity is 10-9 m/s, the acceleration is
0:363 m/s?, and the retardation is 0-545m|s*. During the first
minute the train travels 490m, and during the last minute 545 m.

Example 1.7 The maximum acceleration of a body is 4m/s?,
and the maximum retardation is 8m/s>. What is the shortest
time in which the body can move through a distance of 5km
from rest to rest?

The shortest time occurs when the body accelerates to its
maximum speed and immediately retards. The velocity-time
diagram is then a triangle, similar to fig.1.11.

N
O ®
i \@‘ld\' 3_
£ cce' O
G A
2 g s,
o < )
e [ Area represents x5
2 5km .
%
A1
a) t T
. Time seconds
Fig.1.11
Let T = total time in seconds

t = time to accelerate
T — t = time to retard
v = maximum velocity, m/s

Initial velocity is zero and acceleration is uniform, hence
maximum velocity is given by

v=at
=dF + 2 5 & o5 o2 oz o» @)
Similarly, for the retardation
v=8(T—1)
Equating, 8(T — ¢) = 4¢
2
t_—jT
Hence from (1) v =4 x 4T
vng..........(Z)

-

Area of triangle represents distance travelled:

1T.v = 5000
Tv = 10 000

Substituting from (2),
8
T.§T= 10000
T = 3750

T = 61 seconds

i.e. The shortest time is 61 seconds.

Motion of Falling Bodies

When a body is allowed to fall freely to the ground, it moves
with a uniform acceleration produced by the gravitational
attraction of the earth. This acceleration varies from place to
place on the earth’s surface. Its value is approximately 9-81
m/s? at London, and this is the value which we shall normally
use in our calculations. The small letter g is the symbol
associated with the acceleration due to gravity.

The important fact in connection with falling bodies is that,
since they are all subject to the same gravitational acceleration
at the same place on the earth’s surface, it follows that they
will all travel through the same distance in the same interval
of time. Whilst we may feel that a heavy body would fall
quicker than a light body, and that it would travel faster, this
is not, in fact, the case. Neglecting any wind resistance, the
two bodies would move with the same velocity, and take the
same time to fall through the same vertical height.

The equations for motion due to gravity follow the same
pattern as those for linear motion, with the slight modification
of introducing g as the acceleration, instead of . We shall also
have to be rather careful in connection with the sign of the
various quantities involved. For example, a body thrown
upwards will reach a certain height and then begin to fall. The
direction, as well as the magnitude, of the velocity will change.
To allow for this we consider all upward directions to be
positive, both for displacements and velocities. Downward
directions will be negative. This will include the gravitational
acceleration, which is always down, and will therefore always
be negative. Hence the motion equations applied to falling
bodies become:

v=u—gt
v:—ut = —2gs
s= ut — 3gt?

Upward displacements and velocities are positive.
Downward displacements and velocities are negative.

Note that in all cases the value of s is the displacement of the
body from the starting-point, and not necessarily the distance
travelled from the starting-point. For example, the body may
have travelled 50m upwards and at the instant under con-
sideration may have fallen 40 m from the highest point reached.
The value of s will be 4+ 10m, indicating that the body is 10m
above the starting-point, although the body has actually
travelled 50 + 40 = 90m.



Example 1.8 A stone is allowed to fall from the edge of a cliff
122-5m high. What will be its velocity after 3 seconds? How
far will it have travelled at the end of 3 seconds? How long
will it take the stone to reach the base of the cliff? What will
be its striking velocity on reaching the base of the cliff?

Since the stone is just allowed to fall, its initial velocity is
zero,i.e.u = 0.

Velocity after 3 seconds:

v=u—gt
=0—981 x3
= — 29:43m/s

i.e. Its velocity is 29-43 m/s downwards.
Distance after 3 seconds:

s = ut — rgt*
=0 x3)— (¢ x981 x 3%
— — 44-15m

i.e. The stone has travelled 44-15m downwards from the point
at which it was released.
Time taken to reach base:

In this case u = Om/s

s = —122-5m, i.e. 122:5m down from the point of
projection
s = ut — Lgr*
—1225=0—14 x 981 x ¢?
$? =25

t = 5 seconds

Striking velocity:

u = 0m/s
s= — 122-5m
vi—ut = —2gs
vi—0= —2 x 981 x (— 122'5)
vZ = 2400
v = 49m/s

i.e. After 3 seconds the velocity of the stone will be 29-43m/s. It
will have travelled 44-15m in the first 3 seconds. It will reach the
base of the cliff in 5 seconds, when its striking velocity will be
49m/s.

Example 1.9 A body is projected upwards with a velocity of
50m/s from the top of a tower 100m high. How long will it
take to reach the ground ? What will be the velocity with which
the body strikes the ground ?

u = + 50m/s (upwards)

s = — 100m (ground is 100m below top of
tower)

f= 2

s = ut — %gr*

— 100 = 50t — % x 9-81 x r?

Velocity and Acceleration

2 — 102t — 204 =0
which gives t = 11-9 seconds

Striking velocity :

u= + 50m/s
s = — 100m
v="1
v — = — 2gs
v — 502 = — 2 x 9:81 x (— 100)
v = 2500 + 1962
= 4462
v = 66:9m/s

i.e. Body strikes the ground after 11-9 seconds, with a velocity
of 66-9m]s.

Example 1.10 State Newton’s Laws of Motion. An object is
dropped from an helicopter and strikes the ground 12 seconds
later. Determine the height of the helicopter and the velocity
with which the body strikes the ground.

If a second object had been projected upwards from the
ground with a velocity of 200m/s at the same instant as the
first object was dropped from the helicopter, determine where
and when they would meet. UEI

Reference is made to Newton’s Laws of Motion in Appendix
3.

Height of helicopter:

u = 0m/s (released from rest)

t = 12seconds
s =7

s = ut — gr?
=0x 12 —4% x 981 x 122
= — 706 m (negative sign indicating
downward displacement
from starting-point)
Striking velocity :
v=u—gt
=0-—981 x 12
= — 118 m/s (velocity is downwards)

Considerable care is required with the last part of this
question, particularly with regard to the signs.

sy = distance travelled by first object
s, = distance travelled by second object

Equation of motion of first object:
sy = ut — ygt?
sy = ygr*, sinceu = 0
Equation of second object:
s, = 200t — 1gt* (u = + 200m/s)



Applied Mechanics

-(706-s,)m)|

=5
@

—-706m
S, m

Fig.1.12

Now, referring to fig.1.12, we see that the ground is —706 m
from the helicopter, so that the second object, having travelled
s, from the ground, is —(706 — s,) from the helicopter. When
this distance is equal to sy, the two objects will meet.

-'(706 et Sz) = 5i
—706 + s, = 53
— 706 + 200t — tgt* = — Lgr?
200t = 706

t = 3-53 seconds
Distance from ground to point of meeting:

s, = 200t — Lgt?
=200 x 353 — 1 x 9-81 x 3-532
= 645m from the ground

i.e. The helicopter is 706 m high, and the object strikes the ground
with a velocity of 118 m|s. A second object projected upwards
from the ground with a velocity of 200 m/s would meet the first at
a height of 645m, 3-53 seconds after the instant of projection.

Angular Displacement, 0 (theta)

So far, we have been thinking about motion in a straight line,
such as the motion of a piston in a cylinder. The other import-
ant form of motion is angular motion, such as the motion of
the crank around the crankshaft.

A
A 1
S
/
/
/
/
\9 S/
v

Fig.1.13 Angular displacement
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The rod OA in fig.1.13 is moving in a clockwise direction
about the fixed axis passing through O. The displacement of
the rod can be expressed as an angle. Thus, when the rod has
moved from the position OA to the position OA’, the displace-
ment is 0 radians.

The unit of angular displacement is the radian.

Angular Velocity, » (omega)
Angular velocity is the rate of change of angular displacement.
It is properly expressed in terms of radians per second, al-
though for practical purposes the number of revolutions per
second, or revolutions per minute, is often quoted.

Since 1 revolution is equal to 2= radians, it follows that

2N

0 rad/s

N rev/min

N
= rad/s
Conversely, o rad/s = %’ rev/min

As in the case of linear motion, the angular velocity either
may be uniform or may vary.

Angular Acceleration, « (alpha)

Angular acceleration is the rate of change of angular velocity.
For our purposes, we shall be concerned only with motion
involving a constant angular acceleration or retardation.
Angular retardation is a negative angular acceleration.

Relationship between Angular Displacement,
Velocity, Acceleration, and Time

; = initial velocity in rad/s

w, = final velocity in rad/s after ¢ seconds
o = angular acceleration in rad/s?
6 = angle turned through in radians
t = time in seconds

The initial angular velocity, «;, will be increased by «rad/s
at the end of each second. At the end of ¢ seconds, its velocity
will be w; + af.
This gives

W= +at . . . . . . (D

or W — @i =0l . « « s 3 2 3z (2

Since the velocity is increasing uniformly,

average velocity = 9’—;&
and since displacement = average velocity x time
fi e ﬂ—;ﬁt )



